structure_old/priority_queue/avltree.go
2019-02-13 18:54:03 +08:00

456 lines
9.1 KiB
Go

// Copyright (c) 2017, Benjamin Scher Purcell. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package avltree implements an AVL balanced binary tree.
//
// Structure is not thread safe.
//
// References: https://en.wikipedia.org/wiki/AVL_tree
package plist
import (
"fmt"
"github.com/emirpasic/gods/trees"
"github.com/emirpasic/gods/utils"
)
func assertTreeImplementation() {
var _ trees.Tree = new(Tree)
}
// Tree holds elements of the AVL tree.
type Tree struct {
Root *ANode // Root node
Comparator utils.Comparator // Key comparator
size int // Total number of keys in the tree
}
// ANode is a single element within the tree
type ANode struct {
Key interface{}
Value interface{}
Parent *ANode // Parent node
Children [2]*ANode // Children nodes
b int8
}
// NewWith instantiates an AVL tree with the custom comparator.
func NewWith(comparator utils.Comparator) *Tree {
return &Tree{Comparator: comparator}
}
// NewWithIntComparator instantiates an AVL tree with the IntComparator, i.e. keys are of type int.
func NewWithIntComparator() *Tree {
return &Tree{Comparator: utils.IntComparator}
}
// NewWithStringComparator instantiates an AVL tree with the StringComparator, i.e. keys are of type string.
func NewWithStringComparator() *Tree {
return &Tree{Comparator: utils.StringComparator}
}
// Put inserts node into the tree.
// Key should adhere to the comparator's type assertion, otherwise method panics.
func (t *Tree) Put(key interface{}, value interface{}) (bool, *ANode) {
return t.put(key, value, nil, &t.Root)
}
// Get searches the node in the tree by key and returns its value or nil if key is not found in tree.
// Second return parameter is true if key was found, otherwise false.
// Key should adhere to the comparator's type assertion, otherwise method panics.
func (t *Tree) Get(key interface{}) (value interface{}, found bool) {
n := t.Root
for n != nil {
cmp := t.Comparator(key, n.Key)
switch {
case cmp == 0:
return n.Value, true
case cmp < 0:
n = n.Children[0]
case cmp > 0:
n = n.Children[1]
}
}
return nil, false
}
// Remove remove the node from the tree by key.
// Key should adhere to the comparator's type assertion, otherwise method panics.
func (t *Tree) Remove(key interface{}) {
t.remove(key, &t.Root)
}
// Empty returns true if tree does not contain any nodes.
func (t *Tree) Empty() bool {
return t.size == 0
}
// Size returns the number of elements stored in the tree.
func (t *Tree) Size() int {
return t.size
}
// Keys returns all keys in-order
func (t *Tree) Keys() []interface{} {
keys := make([]interface{}, t.size)
it := t.Iterator()
for i := 0; it.Next(); i++ {
keys[i] = it.Key()
}
return keys
}
// Values returns all values in-order based on the key.
func (t *Tree) Values() []interface{} {
values := make([]interface{}, t.size)
it := t.Iterator()
for i := 0; it.Next(); i++ {
values[i] = it.Value()
}
return values
}
// Left returns the minimum element of the AVL tree
// or nil if the tree is empty.
func (t *Tree) Left() *ANode {
return t.bottom(0)
}
// Right returns the maximum element of the AVL tree
// or nil if the tree is empty.
func (t *Tree) Right() *ANode {
return t.bottom(1)
}
// Floor Finds floor node of the input key, return the floor node or nil if no ceiling is found.
// Second return parameter is true if floor was found, otherwise false.
//
// Floor node is defined as the largest node that is smaller than or equal to the given node.
// A floor node may not be found, either because the tree is empty, or because
// all nodes in the tree is larger than the given node.
//
// Key should adhere to the comparator's type assertion, otherwise method panics.
func (t *Tree) Floor(key interface{}) (floor *ANode, found bool) {
found = false
n := t.Root
last := n
for n != nil {
c := t.Comparator(key, n.Key)
switch {
case c == 0:
return n, true
case c < 0:
last = n
n = n.Children[0]
case c > 0:
floor, found = n, true
n = n.Children[1]
}
}
if found {
return
}
return last, false
}
// Ceiling finds ceiling node of the input key, return the ceiling node or nil if no ceiling is found.
// Second return parameter is true if ceiling was found, otherwise false.
//
// Ceiling node is defined as the smallest node that is larger than or equal to the given node.
// A ceiling node may not be found, either because the tree is empty, or because
// all nodes in the tree is smaller than the given node.
//
// Key should adhere to the comparator's type assertion, otherwise method panics.
func (t *Tree) Ceiling(key interface{}) (floor *ANode, found bool) {
found = false
n := t.Root
last := n
for n != nil {
c := t.Comparator(key, n.Key)
switch {
case c == 0:
return n, true
case c < 0:
floor, found = n, true
n = n.Children[0]
case c > 0:
last = n
n = n.Children[1]
}
}
if found {
return
}
return last, false
}
// Clear removes all nodes from the tree.
func (t *Tree) Clear() {
t.Root = nil
t.size = 0
}
// String returns a string representation of container
func (t *Tree) String() string {
str := "AVLTree\n"
if !t.Empty() {
output(t.Root, "", true, &str)
}
return str
}
func (n *ANode) String() string {
return fmt.Sprintf("%v", n.Key)
}
func (t *Tree) put(key interface{}, value interface{}, p *ANode, qp **ANode) (bool, *ANode) {
q := *qp
if q == nil {
t.size++
*qp = &ANode{Key: key, Value: value, Parent: p}
return true, *qp
}
c := t.Comparator(key, q.Key)
if c == 0 {
q.Key = key
q.Value = value
return false, q
}
if c < 0 {
c = -1
} else {
c = 1
}
a := (c + 1) / 2
var fix bool
fix, node := t.put(key, value, q, &q.Children[a])
if fix {
return putFix(int8(c), qp), *qp
}
return false, q
}
func (t *Tree) remove(key interface{}, qp **ANode) bool {
q := *qp
if q == nil {
return false
}
c := t.Comparator(key, q.Key)
if c == 0 {
t.size--
if q.Children[1] == nil {
if q.Children[0] != nil {
q.Children[0].Parent = q.Parent
}
*qp = q.Children[0]
return true
}
fix := removeMin(&q.Children[1], &q.Key, &q.Value)
if fix {
return removeFix(-1, qp)
}
return false
}
if c < 0 {
c = -1
} else {
c = 1
}
a := (c + 1) / 2
fix := t.remove(key, &q.Children[a])
if fix {
return removeFix(int8(-c), qp)
}
return false
}
func removeMin(qp **ANode, minKey *interface{}, minVal *interface{}) bool {
q := *qp
if q.Children[0] == nil {
*minKey = q.Key
*minVal = q.Value
if q.Children[1] != nil {
q.Children[1].Parent = q.Parent
}
*qp = q.Children[1]
return true
}
fix := removeMin(&q.Children[0], minKey, minVal)
if fix {
return removeFix(1, qp)
}
return false
}
func putFix(c int8, t **ANode) bool {
s := *t
if s.b == 0 {
s.b = c
return true
}
if s.b == -c {
s.b = 0
return false
}
if s.Children[(c+1)/2].b == c {
s = singlerot(c, s)
} else {
s = doublerot(c, s)
}
*t = s
return false
}
func removeFix(c int8, t **ANode) bool {
s := *t
if s.b == 0 {
s.b = c
return false
}
if s.b == -c {
s.b = 0
return true
}
a := (c + 1) / 2
if s.Children[a].b == 0 {
s = rotate(c, s)
s.b = -c
*t = s
return false
}
if s.Children[a].b == c {
s = singlerot(c, s)
} else {
s = doublerot(c, s)
}
*t = s
return true
}
func singlerot(c int8, s *ANode) *ANode {
s.b = 0
s = rotate(c, s)
s.b = 0
return s
}
func doublerot(c int8, s *ANode) *ANode {
a := (c + 1) / 2
r := s.Children[a]
s.Children[a] = rotate(-c, s.Children[a])
p := rotate(c, s)
switch {
default:
s.b = 0
r.b = 0
case p.b == c:
s.b = -c
r.b = 0
case p.b == -c:
s.b = 0
r.b = c
}
p.b = 0
return p
}
func rotate(c int8, s *ANode) *ANode {
a := (c + 1) / 2
r := s.Children[a]
s.Children[a] = r.Children[a^1]
if s.Children[a] != nil {
s.Children[a].Parent = s
}
r.Children[a^1] = s
r.Parent = s.Parent
s.Parent = r
return r
}
func (t *Tree) bottom(d int) *ANode {
n := t.Root
if n == nil {
return nil
}
for c := n.Children[d]; c != nil; c = n.Children[d] {
n = c
}
return n
}
// Prev returns the previous element in an inorder
// walk of the AVL tree.
func (n *ANode) Prev() *ANode {
return n.walk1(0)
}
// Next returns the next element in an inorder
// walk of the AVL tree.
func (n *ANode) Next() *ANode {
return n.walk1(1)
}
func (n *ANode) walk1(a int) *ANode {
if n == nil {
return nil
}
if n.Children[a] != nil {
n = n.Children[a]
for n.Children[a^1] != nil {
n = n.Children[a^1]
}
return n
}
p := n.Parent
for p != nil && p.Children[a] == n {
n = p
p = p.Parent
}
return p
}
func output(node *ANode, prefix string, isTail bool, str *string) {
if node.Children[1] != nil {
newPrefix := prefix
if isTail {
newPrefix += "│ "
} else {
newPrefix += " "
}
output(node.Children[1], newPrefix, false, str)
}
*str += prefix
if isTail {
*str += "└── "
} else {
*str += "┌── "
}
*str += node.String() + "\n"
if node.Children[0] != nil {
newPrefix := prefix
if isTail {
newPrefix += " "
} else {
newPrefix += "│ "
}
output(node.Children[0], newPrefix, true, str)
}
}