googletest/googlemock/docs/cheat_sheet.md

866 lines
40 KiB
Markdown

## gMock Cheat Sheet
<!-- GOOGLETEST_CM0018 DO NOT DELETE -->
### Defining a Mock Class
#### Mocking a Normal Class {#MockClass}
Given
```cpp
class Foo {
...
virtual ~Foo();
virtual int GetSize() const = 0;
virtual string Describe(const char* name) = 0;
virtual string Describe(int type) = 0;
virtual bool Process(Bar elem, int count) = 0;
};
```
(note that `~Foo()` **must** be virtual) we can define its mock as
```cpp
#include "gmock/gmock.h"
class MockFoo : public Foo {
...
MOCK_METHOD(int, GetSize, (), (const, override));
MOCK_METHOD(string, Describe, (const char* name), (override));
MOCK_METHOD(string, Describe, (int type), (override));
MOCK_METHOD(bool, Process, (Bar elem, int count), (override));
};
```
To create a "nice" mock, which ignores all uninteresting calls, a "naggy" mock,
which warns on all uninteresting calls, or a "strict" mock, which treats them as
failures:
```cpp
using ::testing::NiceMock;
using ::testing::NaggyMock;
using ::testing::StrictMock;
NiceMock<MockFoo> nice_foo; // The type is a subclass of MockFoo.
NaggyMock<MockFoo> naggy_foo; // The type is a subclass of MockFoo.
StrictMock<MockFoo> strict_foo; // The type is a subclass of MockFoo.
```
**Note:** A mock object is currently naggy by default. We may make it nice by
default in the future.
#### Mocking a Class Template {#MockTemplate}
Class templates can be mocked just like any class.
To mock
```cpp
template <typename Elem>
class StackInterface {
...
virtual ~StackInterface();
virtual int GetSize() const = 0;
virtual void Push(const Elem& x) = 0;
};
```
(note that all member functions that are mocked, including `~StackInterface()`
**must** be virtual).
```cpp
template <typename Elem>
class MockStack : public StackInterface<Elem> {
...
MOCK_METHOD(int, GetSize, (), (const, override));
MOCK_METHOD(void, Push, (const Elem& x), (override));
};
```
#### Specifying Calling Conventions for Mock Functions
If your mock function doesn't use the default calling convention, you can
specify it by adding `Calltype(convention)` to `MOCK_METHOD`'s 4th parameter.
For example,
```cpp
MOCK_METHOD(bool, Foo, (int n), (Calltype(STDMETHODCALLTYPE)));
MOCK_METHOD(int, Bar, (double x, double y),
(const, Calltype(STDMETHODCALLTYPE)));
```
where `STDMETHODCALLTYPE` is defined by `<objbase.h>` on Windows.
### Using Mocks in Tests {#UsingMocks}
The typical work flow is:
1. Import the gMock names you need to use. All gMock symbols are in the
`testing` namespace unless they are macros or otherwise noted.
2. Create the mock objects.
3. Optionally, set the default actions of the mock objects.
4. Set your expectations on the mock objects (How will they be called? What
will they do?).
5. Exercise code that uses the mock objects; if necessary, check the result
using googletest assertions.
6. When a mock object is destructed, gMock automatically verifies that all
expectations on it have been satisfied.
Here's an example:
```cpp
using ::testing::Return; // #1
TEST(BarTest, DoesThis) {
MockFoo foo; // #2
ON_CALL(foo, GetSize()) // #3
.WillByDefault(Return(1));
// ... other default actions ...
EXPECT_CALL(foo, Describe(5)) // #4
.Times(3)
.WillRepeatedly(Return("Category 5"));
// ... other expectations ...
EXPECT_EQ("good", MyProductionFunction(&foo)); // #5
} // #6
```
### Setting Default Actions {#OnCall}
gMock has a **built-in default action** for any function that returns `void`,
`bool`, a numeric value, or a pointer. In C++11, it will additionally returns
the default-constructed value, if one exists for the given type.
To customize the default action for functions with return type *`T`*:
```cpp
using ::testing::DefaultValue;
// Sets the default value to be returned. T must be CopyConstructible.
DefaultValue<T>::Set(value);
// Sets a factory. Will be invoked on demand. T must be MoveConstructible.
// T MakeT();
DefaultValue<T>::SetFactory(&MakeT);
// ... use the mocks ...
// Resets the default value.
DefaultValue<T>::Clear();
```
Example usage:
```cpp
// Sets the default action for return type std::unique_ptr<Buzz> to
// creating a new Buzz every time.
DefaultValue<std::unique_ptr<Buzz>>::SetFactory(
[] { return MakeUnique<Buzz>(AccessLevel::kInternal); });
// When this fires, the default action of MakeBuzz() will run, which
// will return a new Buzz object.
EXPECT_CALL(mock_buzzer_, MakeBuzz("hello")).Times(AnyNumber());
auto buzz1 = mock_buzzer_.MakeBuzz("hello");
auto buzz2 = mock_buzzer_.MakeBuzz("hello");
EXPECT_NE(nullptr, buzz1);
EXPECT_NE(nullptr, buzz2);
EXPECT_NE(buzz1, buzz2);
// Resets the default action for return type std::unique_ptr<Buzz>,
// to avoid interfere with other tests.
DefaultValue<std::unique_ptr<Buzz>>::Clear();
```
To customize the default action for a particular method of a specific mock
object, use `ON_CALL()`. `ON_CALL()` has a similar syntax to `EXPECT_CALL()`,
but it is used for setting default behaviors (when you do not require that the
mock method is called). See go/prefer-on-call for a more detailed discussion.
```cpp
ON_CALL(mock-object, method(matchers))
.With(multi-argument-matcher) ?
.WillByDefault(action);
```
### Setting Expectations {#ExpectCall}
`EXPECT_CALL()` sets **expectations** on a mock method (How will it be called?
What will it do?):
```cpp
EXPECT_CALL(mock-object, method (matchers)?)
.With(multi-argument-matcher) ?
.Times(cardinality) ?
.InSequence(sequences) *
.After(expectations) *
.WillOnce(action) *
.WillRepeatedly(action) ?
.RetiresOnSaturation(); ?
```
If `(matchers)` is omitted, the expectation is the same as if the matchers were
set to anything matchers (for example, `(_, _, _, _)` for a four-arg method).
If `Times()` is omitted, the cardinality is assumed to be:
* `Times(1)` when there is neither `WillOnce()` nor `WillRepeatedly()`;
* `Times(n)` when there are `n` `WillOnce()`s but no `WillRepeatedly()`, where
`n` >= 1; or
* `Times(AtLeast(n))` when there are `n` `WillOnce()`s and a
`WillRepeatedly()`, where `n` >= 0.
A method with no `EXPECT_CALL()` is free to be invoked *any number of times*,
and the default action will be taken each time.
### Matchers {#MatcherList}
<!-- GOOGLETEST_CM0019 DO NOT DELETE -->
A **matcher** matches a *single* argument. You can use it inside `ON_CALL()` or
`EXPECT_CALL()`, or use it to validate a value directly:
| Matcher | Description |
| :----------------------------------- | :------------------------------------ |
| `EXPECT_THAT(actual_value, matcher)` | Asserts that `actual_value` matches |
: : `matcher`. :
| `ASSERT_THAT(actual_value, matcher)` | The same as |
: : `EXPECT_THAT(actual_value, matcher)`, :
: : except that it generates a **fatal** :
: : failure. :
Built-in matchers (where `argument` is the function argument) are divided into
several categories:
## Wildcard
Matcher | Description
:-------------------------- | :-----------------------------------------------
`_` | `argument` can be any value of the correct type.
`A<type>()` or `An<type>()` | `argument` can be any value of type `type`.
#### Generic Comparison
| Matcher | Description |
| :--------------------- | :-------------------------------------------------- |
| `Eq(value)` or `value` | `argument == value` |
| `Ge(value)` | `argument >= value` |
| `Gt(value)` | `argument > value` |
| `Le(value)` | `argument <= value` |
| `Lt(value)` | `argument < value` |
| `Ne(value)` | `argument != value` |
| `IsNull()` | `argument` is a `NULL` pointer (raw or smart). |
| `NotNull()` | `argument` is a non-null pointer (raw or smart). |
| `Optional(m)` | `argument` is `optional<>` that contains a value |
: : matching `m`. :
| `VariantWith<T>(m)` | `argument` is `variant<>` that holds the |
: : alternative of type T with a value matching `m`. :
| `Ref(variable)` | `argument` is a reference to `variable`. |
| `TypedEq<type>(value)` | `argument` has type `type` and is equal to `value`. |
: : You may need to use this instead of `Eq(value)` :
: : when the mock function is overloaded. :
Except `Ref()`, these matchers make a *copy* of `value` in case it's modified or
destructed later. If the compiler complains that `value` doesn't have a public
copy constructor, try wrap it in `ByRef()`, e.g.
`Eq(ByRef(non_copyable_value))`. If you do that, make sure `non_copyable_value`
is not changed afterwards, or the meaning of your matcher will be changed.
#### Floating-Point Matchers {#FpMatchers}
| Matcher | Description |
| :------------------------------- | :--------------------------------- |
| `DoubleEq(a_double)` | `argument` is a `double` value |
: : approximately equal to `a_double`, :
: : treating two NaNs as unequal. :
| `FloatEq(a_float)` | `argument` is a `float` value |
: : approximately equal to `a_float`, :
: : treating two NaNs as unequal. :
| `NanSensitiveDoubleEq(a_double)` | `argument` is a `double` value |
: : approximately equal to `a_double`, :
: : treating two NaNs as equal. :
| `NanSensitiveFloatEq(a_float)` | `argument` is a `float` value |
: : approximately equal to `a_float`, :
: : treating two NaNs as equal. :
The above matchers use ULP-based comparison (the same as used in googletest).
They automatically pick a reasonable error bound based on the absolute value of
the expected value. `DoubleEq()` and `FloatEq()` conform to the IEEE standard,
which requires comparing two NaNs for equality to return false. The
`NanSensitive*` version instead treats two NaNs as equal, which is often what a
user wants.
| Matcher | Description |
| :---------------------------------- | :------------------------------------- |
| `DoubleNear(a_double, | `argument` is a `double` value close |
: max_abs_error)` : to `a_double` (absolute error <= :
: : `max_abs_error`), treating two NaNs as :
: : unequal. :
| `FloatNear(a_float, max_abs_error)` | `argument` is a `float` value close to |
: : `a_float` (absolute error <= :
: : `max_abs_error`), treating two NaNs as :
: : unequal. :
| `NanSensitiveDoubleNear(a_double, | `argument` is a `double` value close |
: max_abs_error)` : to `a_double` (absolute error <= :
: : `max_abs_error`), treating two NaNs as :
: : equal. :
| `NanSensitiveFloatNear(a_float, | `argument` is a `float` value close to |
: max_abs_error)` : `a_float` (absolute error <= :
: : `max_abs_error`), treating two NaNs as :
: : equal. :
#### String Matchers
The `argument` can be either a C string or a C++ string object:
| Matcher | Description |
| :---------------------- | :------------------------------------------------- |
| `ContainsRegex(string)` | `argument` matches the given regular expression. |
| `EndsWith(suffix)` | `argument` ends with string `suffix`. |
| `HasSubstr(string)` | `argument` contains `string` as a sub-string. |
| `MatchesRegex(string)` | `argument` matches the given regular expression |
: : with the match starting at the first character and :
: : ending at the last character. :
| `StartsWith(prefix)` | `argument` starts with string `prefix`. |
| `StrCaseEq(string)` | `argument` is equal to `string`, ignoring case. |
| `StrCaseNe(string)` | `argument` is not equal to `string`, ignoring |
: : case. :
| `StrEq(string)` | `argument` is equal to `string`. |
| `StrNe(string)` | `argument` is not equal to `string`. |
`ContainsRegex()` and `MatchesRegex()` take ownership of the `RE` object. They
use the regular expression syntax defined
[here](http://go/gunit-advanced-regex). `StrCaseEq()`, `StrCaseNe()`, `StrEq()`,
and `StrNe()` work for wide strings as well.
#### Container Matchers
Most STL-style containers support `==`, so you can use `Eq(expected_container)`
or simply `expected_container` to match a container exactly. If you want to
write the elements in-line, match them more flexibly, or get more informative
messages, you can use:
| Matcher | Description |
| :----------------------------------- | :----------------------------------- |
| `ContainerEq(container)` | The same as `Eq(container)` except |
: : that the failure message also :
: : includes which elements are in one :
: : container but not the other. :
| `Contains(e)` | `argument` contains an element that |
: : matches `e`, which can be either a :
: : value or a matcher. :
| `Each(e)` | `argument` is a container where |
: : _every_ element matches `e`, which :
: : can be either a value or a matcher. :
| `ElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, |
: : where the i-th element matches `ei`, :
: : which can be a value or a matcher. 0 :
: : to 10 arguments are allowed. :
| `ElementsAreArray({ e0, e1, ..., en | The same as `ElementsAre()` except |
: })`, `ElementsAreArray(array)`, or : that the expected element :
: `ElementsAreArray(array, count)` : values/matchers come from an :
: : initializer list, STL-style :
: : container, or C-style array. :
| `IsEmpty()` | `argument` is an empty container |
: : (`container.empty()`). :
| `Pointwise(m, container)` | `argument` contains the same number |
: : of elements as in `container`, and :
: : for all i, (the i-th element in :
: : `argument`, the i-th element in :
: : `container`) match `m`, which is a :
: : matcher on 2-tuples. E.g. :
: : `Pointwise(Le(), upper_bounds)` :
: : verifies that each element in :
: : `argument` doesn't exceed the :
: : corresponding element in :
: : `upper_bounds`. See more detail :
: : below. :
| `SizeIs(m)` | `argument` is a container whose size |
: : matches `m`. E.g. `SizeIs(2)` or :
: : `SizeIs(Lt(2))`. :
| `UnorderedElementsAre(e0, e1, ..., | `argument` has `n + 1` elements, and |
: en)` : under some permutation each element :
: : matches an `ei` (for a different :
: : `i`), which can be a value or a :
: : matcher. 0 to 10 arguments are :
: : allowed. :
| `UnorderedElementsAreArray({ e0, e1, | The same as `UnorderedElementsAre()` |
: ..., en })`, : except that the expected element :
: `UnorderedElementsAreArray(array)`, : values/matchers come from an :
: or `UnorderedElementsAreArray(array, : initializer list, STL-style :
: count)` : container, or C-style array. :
| `WhenSorted(m)` | When `argument` is sorted using the |
: : `<` operator, it matches container :
: : matcher `m`. E.g. :
: : `WhenSorted(ElementsAre(1, 2, 3))` :
: : verifies that `argument` contains :
: : elements `1`, `2`, and `3`, ignoring :
: : order. :
| `WhenSortedBy(comparator, m)` | The same as `WhenSorted(m)`, except |
: : that the given comparator instead of :
: : `<` is used to sort `argument`. E.g. :
: : `WhenSortedBy(std\:\:greater<int>(), :
: : ElementsAre(3, 2, 1))`. :
**Notes:**
* These matchers can also match:
1. a native array passed by reference (e.g. in `Foo(const int (&a)[5])`),
and
2. an array passed as a pointer and a count (e.g. in `Bar(const T* buffer,
int len)` -- see [Multi-argument Matchers](#MultiArgMatchers)).
* The array being matched may be multi-dimensional (i.e. its elements can be
arrays).
* `m` in `Pointwise(m, ...)` should be a matcher for `::std::tuple<T, U>`
where `T` and `U` are the element type of the actual container and the
expected container, respectively. For example, to compare two `Foo`
containers where `Foo` doesn't support `operator==`, one might write:
```cpp
using ::std::get;
MATCHER(FooEq, "") {
return std::get<0>(arg).Equals(std::get<1>(arg));
}
...
EXPECT_THAT(actual_foos, Pointwise(FooEq(), expected_foos));
```
#### Member Matchers
| Matcher | Description |
| :------------------------------ | :----------------------------------------- |
| `Field(&class::field, m)` | `argument.field` (or `argument->field` |
: : when `argument` is a plain pointer) :
: : matches matcher `m`, where `argument` is :
: : an object of type _class_. :
| `Key(e)` | `argument.first` matches `e`, which can be |
: : either a value or a matcher. E.g. :
: : `Contains(Key(Le(5)))` can verify that a :
: : `map` contains a key `<= 5`. :
| `Pair(m1, m2)` | `argument` is an `std::pair` whose `first` |
: : field matches `m1` and `second` field :
: : matches `m2`. :
| `Property(&class::property, m)` | `argument.property()` (or |
: : `argument->property()` when `argument` is :
: : a plain pointer) matches matcher `m`, :
: : where `argument` is an object of type :
: : _class_. :
#### Matching the Result of a Function, Functor, or Callback
| Matcher | Description |
| :--------------- | :------------------------------------------------ |
| `ResultOf(f, m)` | `f(argument)` matches matcher `m`, where `f` is a |
: : function or functor. :
#### Pointer Matchers
| Matcher | Description |
| :------------------------ | :---------------------------------------------- |
| `Pointee(m)` | `argument` (either a smart pointer or a raw |
: : pointer) points to a value that matches matcher :
: : `m`. :
| `WhenDynamicCastTo<T>(m)` | when `argument` is passed through |
: : `dynamic_cast<T>()`, it matches matcher `m`. :
#### Multi-argument Matchers {#MultiArgMatchers}
Technically, all matchers match a *single* value. A "multi-argument" matcher is
just one that matches a *tuple*. The following matchers can be used to match a
tuple `(x, y)`:
Matcher | Description
:------ | :----------
`Eq()` | `x == y`
`Ge()` | `x >= y`
`Gt()` | `x > y`
`Le()` | `x <= y`
`Lt()` | `x < y`
`Ne()` | `x != y`
You can use the following selectors to pick a subset of the arguments (or
reorder them) to participate in the matching:
| Matcher | Description |
| :------------------------- | :---------------------------------------------- |
| `AllArgs(m)` | Equivalent to `m`. Useful as syntactic sugar in |
: : `.With(AllArgs(m))`. :
| `Args<N1, N2, ..., Nk>(m)` | The tuple of the `k` selected (using 0-based |
: : indices) arguments matches `m`, e.g. `Args<1, :
: : 2>(Eq())`. :
#### Composite Matchers
You can make a matcher from one or more other matchers:
| Matcher | Description |
| :----------------------- | :---------------------------------------------- |
| `AllOf(m1, m2, ..., mn)` | `argument` matches all of the matchers `m1` to |
: : `mn`. :
| `AnyOf(m1, m2, ..., mn)` | `argument` matches at least one of the matchers |
: : `m1` to `mn`. :
| `Not(m)` | `argument` doesn't match matcher `m`. |
#### Adapters for Matchers
| Matcher | Description |
| :---------------------- | :------------------------------------ |
| `MatcherCast<T>(m)` | casts matcher `m` to type |
: : `Matcher<T>`. :
| `SafeMatcherCast<T>(m)` | [safely |
: : casts](cook_book.md#casting-matchers) :
: : matcher `m` to type `Matcher<T>`. :
| `Truly(predicate)` | `predicate(argument)` returns |
: : something considered by C++ to be :
: : true, where `predicate` is a function :
: : or functor. :
`AddressSatisfies(callback)` and `Truly(callback)` take ownership of `callback`,
which must be a permanent callback.
#### Matchers as Predicates {#MatchersAsPredicatesCheat}
| Matcher | Description |
| :---------------------------- | :------------------------------------------ |
| `Matches(m)(value)` | evaluates to `true` if `value` matches `m`. |
: : You can use `Matches(m)` alone as a unary :
: : functor. :
| `ExplainMatchResult(m, value, | evaluates to `true` if `value` matches `m`, |
: result_listener)` : explaining the result to `result_listener`. :
| `Value(value, m)` | evaluates to `true` if `value` matches `m`. |
#### Defining Matchers
| Matcher | Description |
| :----------------------------------- | :------------------------------------ |
| `MATCHER(IsEven, "") { return (arg % | Defines a matcher `IsEven()` to match |
: 2) == 0; }` : an even number. :
| `MATCHER_P(IsDivisibleBy, n, "") { | Defines a macher `IsDivisibleBy(n)` |
: *result_listener << "where the : to match a number divisible by `n`. :
: remainder is " << (arg % n); return : :
: (arg % n) == 0; }` : :
| `MATCHER_P2(IsBetween, a, b, | Defines a matcher `IsBetween(a, b)` |
: std\:\:string(negation ? "isn't" \: : to match a value in the range [`a`, :
: "is") + " between " + : `b`]. :
: PrintToString(a) + " and " + : :
: PrintToString(b)) { return a <= arg : :
: && arg <= b; }` : :
**Notes:**
1. The `MATCHER*` macros cannot be used inside a function or class.
1. The matcher body must be *purely functional* (i.e. it cannot have any side
effect, and the result must not depend on anything other than the value
being matched and the matcher parameters).
1. You can use `PrintToString(x)` to convert a value `x` of any type to a
string.
## Matchers as Test Assertions
Matcher | Description
:--------------------------- | :----------
`ASSERT_THAT(expression, m)` | Generates a [fatal failure](../../googletest/docs/primer.md#assertions) if the value of `expression` doesn't match matcher `m`.
`EXPECT_THAT(expression, m)` | Generates a non-fatal failure if the value of `expression` doesn't match matcher `m`.
### Actions {#ActionList}
**Actions** specify what a mock function should do when invoked.
#### Returning a Value
| Matcher | Description |
| :-------------------------- | :-------------------------------------------- |
| `Return()` | Return from a `void` mock function. |
| `Return(value)` | Return `value`. If the type of `value` is |
: : different to the mock function's return type, :
: : `value` is converted to the latter type <i>at :
: : the time the expectation is set</i>, not when :
: : the action is executed. :
| `ReturnArg<N>()` | Return the `N`-th (0-based) argument. |
| `ReturnNew<T>(a1, ..., ak)` | Return `new T(a1, ..., ak)`; a different |
: : object is created each time. :
| `ReturnNull()` | Return a null pointer. |
| `ReturnPointee(ptr)` | Return the value pointed to by `ptr`. |
| `ReturnRef(variable)` | Return a reference to `variable`. |
| `ReturnRefOfCopy(value)` | Return a reference to a copy of `value`; the |
: : copy lives as long as the action. :
#### Side Effects
| Matcher | Description |
| :--------------------------------- | :-------------------------------------- |
| `Assign(&variable, value)` | Assign `value` to variable. |
| `DeleteArg<N>()` | Delete the `N`-th (0-based) argument, |
: : which must be a pointer. :
| `SaveArg<N>(pointer)` | Save the `N`-th (0-based) argument to |
: : `*pointer`. :
| `SaveArgPointee<N>(pointer)` | Save the value pointed to by the `N`-th |
: : (0-based) argument to `*pointer`. :
| `SetArgReferee<N>(value)` | Assign value to the variable referenced |
: : by the `N`-th (0-based) argument. :
| `SetArgPointee<N>(value)` | Assign `value` to the variable pointed |
: : by the `N`-th (0-based) argument. :
| `SetArgumentPointee<N>(value)` | Same as `SetArgPointee<N>(value)`. |
: : Deprecated. Will be removed in v1.7.0. :
| `SetArrayArgument<N>(first, last)` | Copies the elements in source range |
: : [`first`, `last`) to the array pointed :
: : to by the `N`-th (0-based) argument, :
: : which can be either a pointer or an :
: : iterator. The action does not take :
: : ownership of the elements in the source :
: : range. :
| `SetErrnoAndReturn(error, value)` | Set `errno` to `error` and return |
: : `value`. :
| `Throw(exception)` | Throws the given exception, which can |
: : be any copyable value. Available since :
: : v1.1.0. :
#### Using a Function, Functor, Lambda, or Callback as an Action
In the following, by "callable" we mean a free function, `std::function`,
functor, lambda, or `google3`-style permanent callback.
| Matcher | Description |
| :---------------------------------- | :------------------------------------- |
| `Invoke(f)` | Invoke `f` with the arguments passed |
: : to the mock function, where `f` can be :
: : a global/static function or a functor. :
| `Invoke(object_pointer, | Invoke the {method on the object with |
: &class\:\:method)` : the arguments passed to the mock :
: : function. :
| `InvokeWithoutArgs(f)` | Invoke `f`, which can be a |
: : global/static function or a functor. :
: : `f` must take no arguments. :
| `InvokeWithoutArgs(object_pointer, | Invoke the method on the object, which |
: &class\:\:method)` : takes no arguments. :
| `InvokeArgument<N>(arg1, arg2, ..., | Invoke the mock function's `N`-th |
: argk)` : (0-based) argument, which must be a :
: : function or a functor, with the `k` :
: : arguments. :
The return value of the invoked function is used as the return value of the
action.
When defining a callable to be used with `Invoke*()`, you can declare any unused
parameters as `Unused`:
```cpp
using ::testing::Invoke;
double Distance(Unused, double x, double y) { return sqrt(x*x + y*y); }
...
EXPECT_CALL(mock, Foo("Hi", _, _)).WillOnce(Invoke(Distance));
```
`Invoke(callback)` and `InvokeWithoutArgs(callback)` take ownership of
`callback`, which must be permanent. The type of `callback` must be a base
callback type instead of a derived one, e.g.
```cpp
BlockingClosure* done = new BlockingClosure;
... Invoke(done) ...; // This won't compile!
Closure* done2 = new BlockingClosure;
... Invoke(done2) ...; // This works.
```
In `InvokeArgument<N>(...)`, if an argument needs to be passed by reference,
wrap it inside `ByRef()`. For example,
```cpp
using ::testing::ByRef;
using ::testing::InvokeArgument;
...
InvokeArgument<2>(5, string("Hi"), ByRef(foo))
```
calls the mock function's #2 argument, passing to it `5` and `string("Hi")` by
value, and `foo` by reference.
## Default Action
| Matcher | Description |
| :------------ | :----------------------------------------------------- |
| `DoDefault()` | Do the default action (specified by `ON_CALL()` or the |
: : built-in one). :
**Note:** due to technical reasons, `DoDefault()` cannot be used inside a
composite action - trying to do so will result in a run-time error.
## Composite Actions
| Matcher | Description |
| :----------------------------- | :------------------------------------------ |
| `DoAll(a1, a2, ..., an)` | Do all actions `a1` to `an` and return the |
: : result of `an` in each invocation. The :
: : first `n - 1` sub-actions must return void. :
| `IgnoreResult(a)` | Perform action `a` and ignore its result. |
: : `a` must not return void. :
| `WithArg<N>(a)` | Pass the `N`-th (0-based) argument of the |
: : mock function to action `a` and perform it. :
| `WithArgs<N1, N2, ..., Nk>(a)` | Pass the selected (0-based) arguments of |
: : the mock function to action `a` and perform :
: : it. :
| `WithoutArgs(a)` | Perform action `a` without any arguments. |
## Defining Actions
| Matcher | Description |
| :--------------------------------- | :-------------------------------------- |
| `ACTION(Sum) { return arg0 + arg1; | Defines an action `Sum()` to return the |
: }` : sum of the mock function's argument #0 :
: : and #1. :
| `ACTION_P(Plus, n) { return arg0 + | Defines an action `Plus(n)` to return |
: n; }` : the sum of the mock function's :
: : argument #0 and `n`. :
| `ACTION_Pk(Foo, p1, ..., pk) { | Defines a parameterized action `Foo(p1, |
: statements; }` : ..., pk)` to execute the given :
: : `statements`. :
The `ACTION*` macros cannot be used inside a function or class.
### Cardinalities {#CardinalityList}
These are used in `Times()` to specify how many times a mock function will be
called:
| Matcher | Description |
| :---------------- | :----------------------------------------------------- |
| `AnyNumber()` | The function can be called any number of times. |
| `AtLeast(n)` | The call is expected at least `n` times. |
| `AtMost(n)` | The call is expected at most `n` times. |
| `Between(m, n)` | The call is expected between `m` and `n` (inclusive) |
: : times. :
| `Exactly(n) or n` | The call is expected exactly `n` times. In particular, |
: : the call should never happen when `n` is 0. :
### Expectation Order
By default, the expectations can be matched in *any* order. If some or all
expectations must be matched in a given order, there are two ways to specify it.
They can be used either independently or together.
#### The After Clause {#AfterClause}
```cpp
using ::testing::Expectation;
...
Expectation init_x = EXPECT_CALL(foo, InitX());
Expectation init_y = EXPECT_CALL(foo, InitY());
EXPECT_CALL(foo, Bar())
.After(init_x, init_y);
```
says that `Bar()` can be called only after both `InitX()` and `InitY()` have
been called.
If you don't know how many pre-requisites an expectation has when you write it,
you can use an `ExpectationSet` to collect them:
```cpp
using ::testing::ExpectationSet;
...
ExpectationSet all_inits;
for (int i = 0; i < element_count; i++) {
all_inits += EXPECT_CALL(foo, InitElement(i));
}
EXPECT_CALL(foo, Bar())
.After(all_inits);
```
says that `Bar()` can be called only after all elements have been initialized
(but we don't care about which elements get initialized before the others).
Modifying an `ExpectationSet` after using it in an `.After()` doesn't affect the
meaning of the `.After()`.
#### Sequences {#UsingSequences}
When you have a long chain of sequential expectations, it's easier to specify
the order using **sequences**, which don't require you to given each expectation
in the chain a different name. *All expected calls* in the same sequence must
occur in the order they are specified.
```cpp
using ::testing::Return;
using ::testing::Sequence;
Sequence s1, s2;
...
EXPECT_CALL(foo, Reset())
.InSequence(s1, s2)
.WillOnce(Return(true));
EXPECT_CALL(foo, GetSize())
.InSequence(s1)
.WillOnce(Return(1));
EXPECT_CALL(foo, Describe(A<const char*>()))
.InSequence(s2)
.WillOnce(Return("dummy"));
```
says that `Reset()` must be called before *both* `GetSize()` *and* `Describe()`,
and the latter two can occur in any order.
To put many expectations in a sequence conveniently:
```cpp
using ::testing::InSequence;
{
InSequence seq;
EXPECT_CALL(...)...;
EXPECT_CALL(...)...;
...
EXPECT_CALL(...)...;
}
```
says that all expected calls in the scope of `seq` must occur in strict order.
The name `seq` is irrelevant.
### Verifying and Resetting a Mock
gMock will verify the expectations on a mock object when it is destructed, or
you can do it earlier:
```cpp
using ::testing::Mock;
...
// Verifies and removes the expectations on mock_obj;
// returns true iff successful.
Mock::VerifyAndClearExpectations(&mock_obj);
...
// Verifies and removes the expectations on mock_obj;
// also removes the default actions set by ON_CALL();
// returns true iff successful.
Mock::VerifyAndClear(&mock_obj);
```
You can also tell gMock that a mock object can be leaked and doesn't need to be
verified:
```cpp
Mock::AllowLeak(&mock_obj);
```
### Mock Classes
gMock defines a convenient mock class template
```cpp
class MockFunction<R(A1, ..., An)> {
public:
MOCK_METHOD(R, Call, (A1, ..., An));
};
```
See this [recipe](cook_book.md#using-check-points) for one application of it.
### Flags
| Flag | Description |
| :----------------------------- | :---------------------------------------- |
| `--gmock_catch_leaked_mocks=0` | Don't report leaked mock objects as |
: : failures. :
| `--gmock_verbose=LEVEL` | Sets the default verbosity level (`info`, |
: : `warning`, or `error`) of Google Mock :
: : messages. :