import numpy from keras.models import load_model from data import load_pay_data, load_gift_data import matplotlib.pyplot as plt # x_train, y_train, tx_train, ty_train = load_pay_data(160) # model = load_model("./predict_pay") # p_data = model.predict(tx_train) # for i in range(len(p_data)): # comp = (p_data[i][0] - ty_train[i]) / ty_train[i] # print(comp, p_data[i][0], ty_train[i]) # if abs(comp) >= 1: # print("测结果:", p_data[i][0], "测:", tx_train[i], "真实:", ty_train[i]) x_train, y_train, tx_train, ty_train = load_gift_data(160) model = load_model("./predict_gift") p_data = model.predict(tx_train) for i in range(len(p_data)): comp = (p_data[i][0] - ty_train[i]) / ty_train[i] print(comp, p_data[i][0], ty_train[i]) if abs(comp) >= 0.1: print("测结果:", p_data[i][0], "测:", tx_train[i], "真实:", ty_train[i]) plt.plot(ty_train) plt.plot(p_data) plt.show() # data = numpy.reshape([[15, 2359688 / 10000000, 255968 / 1000000, 10 / 10000]],(1, 4, 1)) # print( model.predict(data))