2021-03-19 09:14:35 +00:00
|
|
|
|
|
|
|
|
|
|
|
from keras.models import Sequential
|
|
|
|
from keras.layers import Dense, Dropout, Embedding
|
|
|
|
from keras.layers import InputLayer, Activation
|
|
|
|
from keras.layers import LSTM
|
|
|
|
from keras import backend
|
|
|
|
|
|
|
|
import pymysql
|
|
|
|
import pickle
|
|
|
|
import os
|
|
|
|
import numpy
|
|
|
|
|
|
|
|
from data import load_gift_data
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
2021-03-25 09:36:09 +00:00
|
|
|
x_train, y_train, tx_train, ty_train, input_shape = load_gift_data()
|
2021-03-19 09:14:35 +00:00
|
|
|
|
|
|
|
model = Sequential()
|
2021-03-23 10:12:32 +00:00
|
|
|
units = 400
|
2021-03-19 09:14:35 +00:00
|
|
|
|
2021-03-25 09:36:09 +00:00
|
|
|
model.add(LSTM(units, activation='relu', input_shape=input_shape ))
|
2021-03-23 10:12:32 +00:00
|
|
|
model.add(Dropout(0.2))
|
|
|
|
|
2021-03-19 09:14:35 +00:00
|
|
|
model.add(Dense(1))
|
|
|
|
model.summary()
|
|
|
|
|
|
|
|
model.compile(loss='mse', optimizer='adam')
|
|
|
|
|
2021-03-25 09:36:09 +00:00
|
|
|
model.fit(x_train, y_train, batch_size=128, epochs=1500)
|
2021-03-19 09:14:35 +00:00
|
|
|
model.save("./predict_gift")
|
|
|
|
|
|
|
|
p_data = model.predict(tx_train)
|
|
|
|
for i in range(len(p_data)):
|
|
|
|
comp = (p_data[i][0] - ty_train[i]) / ty_train[i]
|
|
|
|
print(comp, p_data[i][0], ty_train[i])
|
2021-03-23 10:12:32 +00:00
|
|
|
if abs(comp) >= 0.1:
|
2021-03-19 09:14:35 +00:00
|
|
|
print("测结果:", p_data[i][0], "测:", tx_train[i], "真实:", ty_train[i])
|
|
|
|
|
|
|
|
|
|
|
|
|