269 lines
13 KiB
Python
269 lines
13 KiB
Python
import json
|
||
import re
|
||
import numpy as np
|
||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||
from sklearn.cluster import DBSCAN
|
||
from sklearn.metrics.pairwise import cosine_similarity
|
||
from tqdm import tqdm
|
||
|
||
# --- 规则和辅助函数 (与之前相同) ---
|
||
PREDEFINED_RULES = [
|
||
# {'name': 'Transfer', 'pattern': re.compile(r'^Transfer from \d+ to \d+$')},
|
||
# {'name': 'International Remittance', 'pattern': re.compile(r'^International Remittance$')},
|
||
# {'name': 'Bill Payment', 'pattern': re.compile(r'^Bill payment successful for amount \d+$')},
|
||
# {'name': 'New Message', 'pattern': re.compile(r'^You have a new message from \d+\.$')},
|
||
# # 新增规则:匹配类似 "Sent GCash to GoTyme Bank with account ending in 6784"
|
||
# {'name': 'Sent GCash to Account', 'pattern': re.compile(r'^Sent GCash to .+? with account ending in \d+$')}
|
||
]
|
||
|
||
def normalize_text(text):
|
||
# 模式 8: 从银行收款 (这条规则必须先运行)
|
||
text = re.sub(
|
||
r'Received GCash from (.+?) with account ending in (\d+) (via .+|and invno:.+)$',
|
||
r'Received GCash from <付款人名称> with account ending in <银行4位数尾号> via <网络或发票号>',
|
||
text
|
||
)
|
||
|
||
# 模式 13: 向未验证账户发送凭证
|
||
# 结构: You have sent <货币> <金额> to an unverified account <手机号> on <日期> <时间> with MSG: <消息>. Your new balance is <货币> <金额>. Ref. No. <流水号>. Go to...
|
||
text = re.sub(
|
||
r'^You have sent PHP [\d,]+\.\d{2} to an unverified account \d{11} on \d{2}-\d{2}-\d{4}\s\d{1,2}:\d{2}\s[AP]M with MSG: \..*? Your new balance is PHP [\d,]+\.\d{2}\. Ref\. No\. \d+\. Go to GCash Help Center to know how to secure your transactions\.$',
|
||
r'You have sent PHP <金额> to an unverified account <收款人号码> on <日期> <时间> with MSG: <消息>. Your new balance is PHP <金额>. Ref. No. <流水号>. Go to GCash Help Center to know how to secure your transactions.',
|
||
text
|
||
)
|
||
|
||
# 模式 12: 详细发送凭证 (更新后可处理多段姓名)
|
||
# 结构: You have sent <货币> <金额> to <收款人> <手机号> on <日期> <时间> with MSG: <消息>. Your new balance is <货币> <金额>. Ref. No. <流水号>.
|
||
text = re.sub(
|
||
r'^You have sent PHP [\d,]+\.\d{2} to (?:[A-Z\*]+\s)+[A-Z\*]\.\s\d{11} on \d{2}-\d{2}-\d{4}\s\d{1,2}:\d{2}\s[AP]M with MSG: \..*? Your new balance is PHP [\d,]+\.\d{2}\. Ref\. No\. \d+\.$',
|
||
r'You have sent PHP <金额> to <收款人名称> <收款人号码> on <日期> <时间> with MSG: <消息>. Your new balance is PHP <金额>. Ref. No. <流水号>.',
|
||
text
|
||
)
|
||
|
||
# 模式 11 (机构): 详细收款凭证
|
||
# 结构: You have received ... of GCash from <来源>. Your new balance is ... <日期时间>. Ref. No. <流水号>. Use now to buy load...
|
||
text = re.sub(
|
||
r'^You have received\s+(?:PHP\s+)?[\d,.]+\s+of GCash from\s+.+?\. Your new balance is\s+(?:PHP\s+)?[\d,.]+\s+\d{1,2}-\d{1,2}-\d{2,4}\s+\d{1,2}:\d{1,2}(?::\d{1,2})?\s+[AP]M\. Ref\. No\.\s+.+?\. Use now to buy load, purchase items, send money, pay bills, and a lot more!$',
|
||
r'You have received <金额> of GCash from <付款人名称>. Your new balance is <金额>. <日期时间>. Ref. No. <流水号>. Use now to buy load, purchase items, send money, pay bills, and a lot more!',
|
||
text
|
||
)
|
||
|
||
# 模式 11 (个人): 详细收款凭证 (最终修正版,兼容多种手机号/余额/结尾格式)
|
||
text = re.sub(
|
||
r'^You have received PHP [\d,.]+\s+of GCash from .+? w/ MSG: .*\. (?:Your new balance is PHP [\d,.]*\.\s)?Ref\. No\. \d+\.(?: To access your funds,.*)?$',
|
||
r'You have received PHP <金额> of GCash from <付款人名称> w/ MSG: <消息>. Your new balance is PHP <金额>. Ref. No. <参考号>.',
|
||
text
|
||
)
|
||
# 模式 12: 详细发送凭证 (最终修正版,兼容所有已知姓名格式)
|
||
text = re.sub(
|
||
r'^You have sent PHP [\d,]+\.\d{2} to .+? \d{11} on \d{2}-\d{2}-\d{4}\s\d{1,2}:\d{2}\s[AP]M with MSG: \..*? Your new balance is PHP [\d,]+\.\d{2}\. Ref\. No\. \d+\.$',
|
||
r'You have sent PHP <金额> to <收款人名称> <收款人号码> on <日期> <时间> with MSG: <消息>. Your new balance is PHP <金额>. Ref. No. <参考号>.',
|
||
text
|
||
)
|
||
|
||
# 模式 10 (来自用户最初的模板列表,这里将其具体化)
|
||
# 结构: You have paid <金额> via GCash to <接收方> on <日期时间>. Ref. No. <参考号>. QRPH Invoice No. <参考号>.
|
||
text = re.sub(
|
||
r'^You have paid P[\d,.]+\s+via GCash to .+? on \d{1,2}-\d{1,2}-\d{2,4}\s\d{1,2}:\d{1,2}:\d{1,2}\s+[AP]M\. Ref\. No\.\s+\d+\. QRPH Invoice No\.\s+\d+\.$',
|
||
r'You have paid P<金额> via GCash to <收款人名称> on <日期时间>. Ref. No. <参考号>. QRPH Invoice No. <参考号>.',
|
||
text
|
||
)
|
||
|
||
# 模式 9 (来自用户最初的模板列表,这里将其具体化)
|
||
# 结构: Sent GCash to <机构名> with account ending in <尾号>
|
||
text = re.sub(
|
||
r'Sent GCash to (.+?) with account ending in (\d+)$',
|
||
r'Sent GCash to <收款人名称> with account ending in <银行4位数尾号>',
|
||
text
|
||
)
|
||
|
||
|
||
|
||
|
||
# 新增规则:模式 7: 从一般来源收款 (这条规则紧随其后)
|
||
# 它只会处理没有被上面那条规则匹配到的 "Received GCash from..."
|
||
text = re.sub(
|
||
r'(?i)^Received GCash from .+$',
|
||
r'Received GCash from <付款人名称>',
|
||
text
|
||
)
|
||
# 模式 6: 带商户交易单号的支付
|
||
# 结构: Payment to <商户名>, Merchant Transaction Number: <交易单号>
|
||
text = re.sub(
|
||
r'Payment to (.+?), Merchant Transaction Number: (.+)$',
|
||
r'Payment to <收款人名称>, Merchant Transaction Number: <交易单号>',
|
||
text
|
||
)
|
||
|
||
# 模式 5 (来自用户最初的模板列表,这里将其具体化)
|
||
# 结构: Payment to <商户名>
|
||
text = re.sub(
|
||
r'^Payment to (.+)$',
|
||
r'Payment to <收款人名称>',
|
||
text
|
||
)
|
||
|
||
text = re.sub(
|
||
r'^(.+?) with (Ref\. no\.|Parent Ref\.No\.|Reference No\.) (.+)$',
|
||
r'<交易类型> with <参考号类型> <参考号>',
|
||
text
|
||
)
|
||
|
||
text = re.sub(r'Sent GCash to <收款人名称> with account ending in (\d+)$', r'Sent GCash to <收款人名称> with account ending in <银行4位数尾号>', text)
|
||
text = re.sub(r'^Transfer from \S+ to \S+$', r'Transfer from <付款人号码> to <收款人号码>', text)
|
||
# 模式 8: 从银行收款
|
||
# 结构: Received GCash from <机构名> with account ending in <尾号> via <网络> or with invno:<...>
|
||
text = re.sub(
|
||
r'Received GCash from (.+?) with account ending in (\d+) (via .+|and invno:.+)$',
|
||
r'Received GCash from <付款人名称> with account ending in <银行4位数尾号> via <流水号>',
|
||
text
|
||
)
|
||
|
||
# 新增规则:Buy Load Transaction
|
||
text = re.sub(
|
||
r'^Buy Load Transaction for .+$',
|
||
r'Buy Load Transaction for <付款人号码>',
|
||
text
|
||
)
|
||
|
||
# 新增规则:Refund
|
||
text = re.sub(
|
||
r'^Refund from .+$',
|
||
r'Refund from <收款人名称>',
|
||
text
|
||
)
|
||
|
||
return text
|
||
|
||
def run_dbscan_on_corpus(corpus, eps, min_samples):
|
||
if not corpus: return set()
|
||
|
||
processed_corpus = [normalize_text(text) for text in corpus]
|
||
|
||
try:
|
||
vectorizer = TfidfVectorizer()
|
||
X = vectorizer.fit_transform(processed_corpus)
|
||
|
||
db = DBSCAN(eps=eps, min_samples=min_samples, metric='cosine', n_jobs=-1).fit(X)
|
||
labels = db.labels_
|
||
|
||
dbscan_templates = set()
|
||
unique_labels = set(labels)
|
||
|
||
for label in unique_labels:
|
||
class_member_indices = np.where(labels == label)[0]
|
||
if label == -1: # 处理噪声点
|
||
for idx in class_member_indices:
|
||
dbscan_templates.add(processed_corpus[idx])
|
||
continue
|
||
|
||
# 处理聚类
|
||
cluster_vectors = X[class_member_indices]
|
||
centroid = np.asarray(cluster_vectors.mean(axis=0))
|
||
similarities = cosine_similarity(cluster_vectors, centroid)
|
||
most_representative_idx_in_cluster = np.argmax(similarities)
|
||
original_corpus_idx = class_member_indices[most_representative_idx_in_cluster]
|
||
dbscan_templates.add(processed_corpus[original_corpus_idx])
|
||
|
||
return dbscan_templates
|
||
except ValueError:
|
||
# 如果批次中所有词都在停用词表中,TfidfVectorizer会报错
|
||
print("警告: DBSCAN批次处理失败,可能因为内容过于单一或简短。将内容视为独立模板。")
|
||
return set(processed_corpus)
|
||
|
||
|
||
def extract_templates_iterative(input_file, output_file, rules, batch_size=1000, eps=0.4, min_samples=2):
|
||
"""
|
||
使用小批量迭代的混合策略来提取模板。
|
||
"""
|
||
print("--- 开始迭代式模板提取 ---")
|
||
final_templates = set()
|
||
unmatched_batch = []
|
||
batch_num = 1
|
||
|
||
try:
|
||
print(f"步骤 1: 逐行处理 '{input_file}' 并动态构建模板库...")
|
||
with open(input_file, 'r', encoding='utf-8') as f:
|
||
total_lines = sum(1 for _ in f)
|
||
|
||
with open(input_file, 'r', encoding='utf-8') as f:
|
||
for line in tqdm(f, total=total_lines, desc="主进程"):
|
||
try:
|
||
content = json.loads(line).get('content')
|
||
if not content: continue
|
||
|
||
normalized_content = normalize_text(content)
|
||
|
||
# 1. 检查是否匹配已发现的任何模板
|
||
if normalized_content in final_templates:
|
||
continue
|
||
|
||
# 2. 检查是否匹配预定义规则
|
||
matched_by_rule = False
|
||
for rule in rules:
|
||
if rule['pattern'].match(content):
|
||
final_templates.add(normalized_content)
|
||
matched_by_rule = True
|
||
break
|
||
|
||
if matched_by_rule:
|
||
continue
|
||
|
||
# 3. 如果都未匹配,加入批处理列表
|
||
unmatched_batch.append(content)
|
||
|
||
# 4. 检查是否触发批处理
|
||
if len(unmatched_batch) >= batch_size:
|
||
print(f"\n--- 处理批次 #{batch_num} (大小: {len(unmatched_batch)}) ---")
|
||
newly_found_templates = run_dbscan_on_corpus(unmatched_batch, eps, min_samples)
|
||
|
||
print(f"批次 #{batch_num}: DBSCAN 发现了 {len(newly_found_templates)} 个潜在模板。")
|
||
final_templates.update(newly_found_templates)
|
||
print(f"当前总模板数: {len(final_templates)}")
|
||
|
||
unmatched_batch.clear()
|
||
batch_num += 1
|
||
|
||
except (json.JSONDecodeError, AttributeError):
|
||
continue
|
||
|
||
# --- 收尾处理 ---
|
||
print("\n--- 文件处理完毕,处理最后一批剩余内容 ---")
|
||
if unmatched_batch:
|
||
print(f"处理最后一个批次 (大小: {len(unmatched_batch)})")
|
||
newly_found_templates = run_dbscan_on_corpus(unmatched_batch, eps, min_samples)
|
||
|
||
print(f"最后一个批次: DBSCAN 发现了 {len(newly_found_templates)} 个潜在模板。")
|
||
final_templates.update(newly_found_templates)
|
||
else:
|
||
print("没有剩余内容需要处理。")
|
||
|
||
# --- 输出 ---
|
||
print("\n--- 第 3 部分: 合并结果并保存 ---")
|
||
print(f"总共找到 {len(final_templates)} 个唯一的模板。")
|
||
|
||
with open(output_file, 'w', encoding='utf-8') as f:
|
||
for template in sorted(list(final_templates)):
|
||
json.dump({"content": template}, f, ensure_ascii=False)
|
||
f.write('\n')
|
||
|
||
print(f"所有模板已成功写入到 '{output_file}'。")
|
||
|
||
except FileNotFoundError:
|
||
print(f"错误:找不到输入文件 '{input_file}'。")
|
||
return
|
||
|
||
# --- 使用示例 ---
|
||
# 假设您已经运行了上一个脚本,生成了 'content_filtered.jsonl'
|
||
input_jsonl_file = 'content_filtered.jsonl'
|
||
output_template_file = 'templates_iterative.txt'
|
||
BATCH_PROCESSING_SIZE = 10000 # 可以根据你的内存和数据量调整
|
||
|
||
extract_templates_iterative(
|
||
input_file=input_jsonl_file,
|
||
output_file=output_template_file,
|
||
rules=PREDEFINED_RULES,
|
||
batch_size=BATCH_PROCESSING_SIZE,
|
||
eps=0.4,
|
||
min_samples=5 # 稍微提高min_samples可以得到更可靠的模板
|
||
) |