This commit is contained in:
eson 2025-09-09 01:40:25 +08:00
parent 3d6e2d3ad7
commit 6267458d07

152
sql_ml.py
View File

@ -5,6 +5,7 @@ from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import DBSCAN from sklearn.cluster import DBSCAN
from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import cosine_similarity
from tqdm import tqdm from tqdm import tqdm
import argparse
# --- 规则和辅助函数 (与之前相同) --- # --- 规则和辅助函数 (与之前相同) ---
PREDEFINED_RULES = [ PREDEFINED_RULES = [
@ -16,6 +17,25 @@ PREDEFINED_RULES = [
# {'name': 'Sent GCash to Account', 'pattern': re.compile(r'^Sent GCash to .+? with account ending in \d+$')} # {'name': 'Sent GCash to Account', 'pattern': re.compile(r'^Sent GCash to .+? with account ending in \d+$')}
] ]
# 占位符到正则表达式的映射
PLACEHOLDER_PATTERNS = {
'<金额>': r'([\d,.]+)',
'<付款人名称>': r'(.+?)',
'<收款人名称>': r'(.+?)',
'<付款人号码>': r'([\d\w\+\-\(\)]+)',
'<收款人号码>': r'([\d\w\+\-\(\)]+)',
'<银行4位数尾号>': r'(\d{4})',
'<参考号>': r'(.+?)',
'<交易单号>': r'(.+?)',
'<日期时间>': r'(.+?)',
'<日期>': r'(\d{2}-\d{2}-\d{4})',
'<时间>': r'(\d{1,2}:\d{2}\s[AP]M)',
'<消息>': r'(.+?)',
'<流水号>': r'(.+?)',
'<网络或发票号>': r'(.+?)',
'<交易类型>': r'(.+?)',
}
def normalize_text(text): def normalize_text(text):
# 模式 8: 从银行收款 (这条规则必须先运行) # 模式 8: 从银行收款 (这条规则必须先运行)
text = re.sub( text = re.sub(
@ -135,6 +155,48 @@ def normalize_text(text):
return text return text
def template_to_regex(template):
"""
将模板转换为可用于提取参数的正则表达式
"""
# 转义模板中的特殊字符,但保留占位符
escaped_template = re.escape(template)
# 将占位符映射到对应的正则表达式捕获组
for placeholder, pattern in PLACEHOLDER_PATTERNS.items():
escaped_placeholder = re.escape(placeholder)
# 替换占位符为对应的捕获组
escaped_template = escaped_template.replace(escaped_placeholder, pattern)
return escaped_template
def extract_parameters(template, message):
"""
从消息中提取参数值
"""
# 生成正则表达式
pattern = template_to_regex(template)
# 匹配消息
match = re.search(pattern, message)
if match:
# 获取所有捕获组
values = match.groups()
# 获取模板中的占位符
placeholders = re.findall(r'<[^>]+>', template)
# 创建参数字典
parameters = {}
for i, placeholder in enumerate(placeholders):
if i < len(values):
parameters[placeholder] = values[i]
return parameters
return {}
def run_dbscan_on_corpus(corpus, eps, min_samples, max_samples=10): def run_dbscan_on_corpus(corpus, eps, min_samples, max_samples=10):
if not corpus: return {} if not corpus: return {}
@ -278,18 +340,90 @@ def extract_templates_iterative(input_file, output_file, rules, batch_size=1000,
print(f"错误:找不到输入文件 '{input_file}'") print(f"错误:找不到输入文件 '{input_file}'")
return return
def extract_values_with_templates(input_file, template_file, output_file):
"""
使用DBSCAN生成的模板从原始消息中提取参数值
"""
print("--- 开始使用模板提取参数值 ---")
# 读取模板
templates = []
with open(template_file, 'r', encoding='utf-8') as f:
for line in f:
template_data = json.loads(line)
templates.append(template_data['content'])
print(f"已加载 {len(templates)} 个模板")
# 从原始数据中提取值
extracted_values = []
with open(input_file, 'r', encoding='utf-8') as f:
total_lines = sum(1 for _ in f)
with open(input_file, 'r', encoding='utf-8') as f:
for line in tqdm(f, total=total_lines, desc="提取参数"):
try:
data = json.loads(line)
content = data.get('content', '')
if not content:
continue
# 尝试匹配每个模板
for template in templates:
parameters = extract_parameters(template, content)
if parameters:
extracted_values.append({
'template': template,
'message': content,
'parameters': parameters
})
# 找到匹配就跳出循环
break
except (json.JSONDecodeError, Exception):
continue
# 保存提取的值
with open(output_file, 'w', encoding='utf-8') as f:
for item in extracted_values:
json.dump(item, f, ensure_ascii=False)
f.write('\n')
print(f"成功从 {len(extracted_values)} 条消息中提取参数,并保存到 '{output_file}'")
# --- 使用示例 --- # --- 使用示例 ---
# 假设您已经运行了上一个脚本,生成了 'content_filtered.jsonl' # 假设您已经运行了上一个脚本,生成了 'content_filtered.jsonl'
input_jsonl_file = 'content_filtered.jsonl' input_jsonl_file = 'content_filtered.jsonl'
output_template_file = 'templates_iterative.txt' output_template_file = 'templates_iterative.txt'
BATCH_PROCESSING_SIZE = 10000 # 可以根据你的内存和数据量调整 BATCH_PROCESSING_SIZE = 10000 # 可以根据你的内存和数据量调整
extract_templates_iterative( if __name__ == "__main__":
input_file=input_jsonl_file, parser = argparse.ArgumentParser(description='Extract templates from GCash transaction data.')
output_file=output_template_file, parser.add_argument('--input_file', type=str, default=input_jsonl_file, help='Input JSONL file path')
rules=PREDEFINED_RULES, parser.add_argument('--output_file', type=str, default=output_template_file, help='Output template file path')
batch_size=BATCH_PROCESSING_SIZE, parser.add_argument('--batch_size', type=int, default=BATCH_PROCESSING_SIZE, help='Batch processing size (data volume)')
eps=0.4, parser.add_argument('--eps', type=float, default=0.4, help='DBSCAN eps parameter')
min_samples=5, # 稍微提高min_samples可以得到更可靠的模板 parser.add_argument('--min_samples', type=int, default=5, help='DBSCAN min_samples parameter')
max_samples_per_template=10 # 设置为正数以导出样本数据0表示不导出 parser.add_argument('--extract_values', action='store_true', help='Extract values using generated templates')
)
args = parser.parse_args()
if args.extract_values:
# 执行参数提取
extract_values_with_templates(
input_file=args.input_file,
template_file=args.output_file,
output_file='extracted_parameters.jsonl'
)
else:
# 执行模板提取
extract_templates_iterative(
input_file=args.input_file,
output_file=args.output_file,
rules=PREDEFINED_RULES,
batch_size=args.batch_size,
eps=args.eps,
min_samples=args.min_samples
)