2174 lines
76 KiB
C++
2174 lines
76 KiB
C++
// Copyright 2007, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: wan@google.com (Zhanyong Wan)
|
|
|
|
// Google Mock - a framework for writing C++ mock classes.
|
|
//
|
|
// This file implements some commonly used argument matchers. More
|
|
// matchers can be defined by the user implementing the
|
|
// MatcherInterface<T> interface if necessary.
|
|
|
|
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
|
|
#define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
|
|
|
|
#include <algorithm>
|
|
#include <ostream> // NOLINT
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include <gmock/gmock-printers.h>
|
|
#include <gmock/internal/gmock-internal-utils.h>
|
|
#include <gmock/internal/gmock-port.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
namespace testing {
|
|
|
|
// To implement a matcher Foo for type T, define:
|
|
// 1. a class FooMatcherImpl that implements the
|
|
// MatcherInterface<T> interface, and
|
|
// 2. a factory function that creates a Matcher<T> object from a
|
|
// FooMatcherImpl*.
|
|
//
|
|
// The two-level delegation design makes it possible to allow a user
|
|
// to write "v" instead of "Eq(v)" where a Matcher is expected, which
|
|
// is impossible if we pass matchers by pointers. It also eases
|
|
// ownership management as Matcher objects can now be copied like
|
|
// plain values.
|
|
|
|
// The implementation of a matcher.
|
|
template <typename T>
|
|
class MatcherInterface {
|
|
public:
|
|
virtual ~MatcherInterface() {}
|
|
|
|
// Returns true iff the matcher matches x.
|
|
virtual bool Matches(T x) const = 0;
|
|
|
|
// Describes this matcher to an ostream.
|
|
virtual void DescribeTo(::std::ostream* os) const = 0;
|
|
|
|
// Describes the negation of this matcher to an ostream. For
|
|
// example, if the description of this matcher is "is greater than
|
|
// 7", the negated description could be "is not greater than 7".
|
|
// You are not required to override this when implementing
|
|
// MatcherInterface, but it is highly advised so that your matcher
|
|
// can produce good error messages.
|
|
virtual void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "not (";
|
|
DescribeTo(os);
|
|
*os << ")";
|
|
}
|
|
|
|
// Explains why x matches, or doesn't match, the matcher. Override
|
|
// this to provide any additional information that helps a user
|
|
// understand the match result.
|
|
virtual void ExplainMatchResultTo(T /* x */, ::std::ostream* /* os */) const {
|
|
// By default, nothing more needs to be explained, as Google Mock
|
|
// has already printed the value of x when this function is
|
|
// called.
|
|
}
|
|
};
|
|
|
|
namespace internal {
|
|
|
|
// An internal class for implementing Matcher<T>, which will derive
|
|
// from it. We put functionalities common to all Matcher<T>
|
|
// specializations here to avoid code duplication.
|
|
template <typename T>
|
|
class MatcherBase {
|
|
public:
|
|
// Returns true iff this matcher matches x.
|
|
bool Matches(T x) const { return impl_->Matches(x); }
|
|
|
|
// Describes this matcher to an ostream.
|
|
void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
|
|
|
|
// Describes the negation of this matcher to an ostream.
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
impl_->DescribeNegationTo(os);
|
|
}
|
|
|
|
// Explains why x matches, or doesn't match, the matcher.
|
|
void ExplainMatchResultTo(T x, ::std::ostream* os) const {
|
|
impl_->ExplainMatchResultTo(x, os);
|
|
}
|
|
protected:
|
|
MatcherBase() {}
|
|
|
|
// Constructs a matcher from its implementation.
|
|
explicit MatcherBase(const MatcherInterface<T>* impl)
|
|
: impl_(impl) {}
|
|
|
|
virtual ~MatcherBase() {}
|
|
private:
|
|
// shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar
|
|
// interfaces. The former dynamically allocates a chunk of memory
|
|
// to hold the reference count, while the latter tracks all
|
|
// references using a circular linked list without allocating
|
|
// memory. It has been observed that linked_ptr performs better in
|
|
// typical scenarios. However, shared_ptr can out-perform
|
|
// linked_ptr when there are many more uses of the copy constructor
|
|
// than the default constructor.
|
|
//
|
|
// If performance becomes a problem, we should see if using
|
|
// shared_ptr helps.
|
|
::testing::internal::linked_ptr<const MatcherInterface<T> > impl_;
|
|
};
|
|
|
|
// The default implementation of ExplainMatchResultTo() for
|
|
// polymorphic matchers.
|
|
template <typename PolymorphicMatcherImpl, typename T>
|
|
inline void ExplainMatchResultTo(const PolymorphicMatcherImpl& /* impl */,
|
|
const T& /* x */,
|
|
::std::ostream* /* os */) {
|
|
// By default, nothing more needs to be said, as Google Mock already
|
|
// prints the value of x elsewhere.
|
|
}
|
|
|
|
} // namespace internal
|
|
|
|
// A Matcher<T> is a copyable and IMMUTABLE (except by assignment)
|
|
// object that can check whether a value of type T matches. The
|
|
// implementation of Matcher<T> is just a linked_ptr to const
|
|
// MatcherInterface<T>, so copying is fairly cheap. Don't inherit
|
|
// from Matcher!
|
|
template <typename T>
|
|
class Matcher : public internal::MatcherBase<T> {
|
|
public:
|
|
// Constructs a null matcher. Needed for storing Matcher objects in
|
|
// STL containers.
|
|
Matcher() {}
|
|
|
|
// Constructs a matcher from its implementation.
|
|
explicit Matcher(const MatcherInterface<T>* impl)
|
|
: internal::MatcherBase<T>(impl) {}
|
|
|
|
// Implicit constructor here allows ipeople to write
|
|
// EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes
|
|
Matcher(T value); // NOLINT
|
|
};
|
|
|
|
// The following two specializations allow the user to write str
|
|
// instead of Eq(str) and "foo" instead of Eq("foo") when a string
|
|
// matcher is expected.
|
|
template <>
|
|
class Matcher<const internal::string&>
|
|
: public internal::MatcherBase<const internal::string&> {
|
|
public:
|
|
Matcher() {}
|
|
|
|
explicit Matcher(const MatcherInterface<const internal::string&>* impl)
|
|
: internal::MatcherBase<const internal::string&>(impl) {}
|
|
|
|
// Allows the user to write str instead of Eq(str) sometimes, where
|
|
// str is a string object.
|
|
Matcher(const internal::string& s); // NOLINT
|
|
|
|
// Allows the user to write "foo" instead of Eq("foo") sometimes.
|
|
Matcher(const char* s); // NOLINT
|
|
};
|
|
|
|
template <>
|
|
class Matcher<internal::string>
|
|
: public internal::MatcherBase<internal::string> {
|
|
public:
|
|
Matcher() {}
|
|
|
|
explicit Matcher(const MatcherInterface<internal::string>* impl)
|
|
: internal::MatcherBase<internal::string>(impl) {}
|
|
|
|
// Allows the user to write str instead of Eq(str) sometimes, where
|
|
// str is a string object.
|
|
Matcher(const internal::string& s); // NOLINT
|
|
|
|
// Allows the user to write "foo" instead of Eq("foo") sometimes.
|
|
Matcher(const char* s); // NOLINT
|
|
};
|
|
|
|
// The PolymorphicMatcher class template makes it easy to implement a
|
|
// polymorphic matcher (i.e. a matcher that can match values of more
|
|
// than one type, e.g. Eq(n) and NotNull()).
|
|
//
|
|
// To define a polymorphic matcher, a user first provides a Impl class
|
|
// that has a Matches() method, a DescribeTo() method, and a
|
|
// DescribeNegationTo() method. The Matches() method is usually a
|
|
// method template (such that it works with multiple types). Then the
|
|
// user creates the polymorphic matcher using
|
|
// MakePolymorphicMatcher(). To provide additional explanation to the
|
|
// match result, define a FREE function (or function template)
|
|
//
|
|
// void ExplainMatchResultTo(const Impl& matcher, const Value& value,
|
|
// ::std::ostream* os);
|
|
//
|
|
// in the SAME NAME SPACE where Impl is defined. See the definition
|
|
// of NotNull() for a complete example.
|
|
template <class Impl>
|
|
class PolymorphicMatcher {
|
|
public:
|
|
explicit PolymorphicMatcher(const Impl& impl) : impl_(impl) {}
|
|
|
|
template <typename T>
|
|
operator Matcher<T>() const {
|
|
return Matcher<T>(new MonomorphicImpl<T>(impl_));
|
|
}
|
|
private:
|
|
template <typename T>
|
|
class MonomorphicImpl : public MatcherInterface<T> {
|
|
public:
|
|
explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
|
|
|
|
virtual bool Matches(T x) const { return impl_.Matches(x); }
|
|
|
|
virtual void DescribeTo(::std::ostream* os) const {
|
|
impl_.DescribeTo(os);
|
|
}
|
|
|
|
virtual void DescribeNegationTo(::std::ostream* os) const {
|
|
impl_.DescribeNegationTo(os);
|
|
}
|
|
|
|
virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
|
|
using ::testing::internal::ExplainMatchResultTo;
|
|
|
|
// C++ uses Argument-Dependent Look-up (aka Koenig Look-up) to
|
|
// resolve the call to ExplainMatchResultTo() here. This
|
|
// means that if there's a ExplainMatchResultTo() function
|
|
// defined in the name space where class Impl is defined, it
|
|
// will be picked by the compiler as the better match.
|
|
// Otherwise the default implementation of it in
|
|
// ::testing::internal will be picked.
|
|
//
|
|
// This look-up rule lets a writer of a polymorphic matcher
|
|
// customize the behavior of ExplainMatchResultTo() when he
|
|
// cares to. Nothing needs to be done by the writer if he
|
|
// doesn't need to customize it.
|
|
ExplainMatchResultTo(impl_, x, os);
|
|
}
|
|
private:
|
|
const Impl impl_;
|
|
};
|
|
|
|
const Impl impl_;
|
|
};
|
|
|
|
// Creates a matcher from its implementation. This is easier to use
|
|
// than the Matcher<T> constructor as it doesn't require you to
|
|
// explicitly write the template argument, e.g.
|
|
//
|
|
// MakeMatcher(foo);
|
|
// vs
|
|
// Matcher<const string&>(foo);
|
|
template <typename T>
|
|
inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) {
|
|
return Matcher<T>(impl);
|
|
};
|
|
|
|
// Creates a polymorphic matcher from its implementation. This is
|
|
// easier to use than the PolymorphicMatcher<Impl> constructor as it
|
|
// doesn't require you to explicitly write the template argument, e.g.
|
|
//
|
|
// MakePolymorphicMatcher(foo);
|
|
// vs
|
|
// PolymorphicMatcher<TypeOfFoo>(foo);
|
|
template <class Impl>
|
|
inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) {
|
|
return PolymorphicMatcher<Impl>(impl);
|
|
}
|
|
|
|
// In order to be safe and clear, casting between different matcher
|
|
// types is done explicitly via MatcherCast<T>(m), which takes a
|
|
// matcher m and returns a Matcher<T>. It compiles only when T can be
|
|
// statically converted to the argument type of m.
|
|
template <typename T, typename M>
|
|
Matcher<T> MatcherCast(M m);
|
|
|
|
// A<T>() returns a matcher that matches any value of type T.
|
|
template <typename T>
|
|
Matcher<T> A();
|
|
|
|
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
|
|
// and MUST NOT BE USED IN USER CODE!!!
|
|
namespace internal {
|
|
|
|
// Appends the explanation on the result of matcher.Matches(value) to
|
|
// os iff the explanation is not empty.
|
|
template <typename T>
|
|
void ExplainMatchResultAsNeededTo(const Matcher<T>& matcher, T value,
|
|
::std::ostream* os) {
|
|
::std::stringstream reason;
|
|
matcher.ExplainMatchResultTo(value, &reason);
|
|
const internal::string s = reason.str();
|
|
if (s != "") {
|
|
*os << " (" << s << ")";
|
|
}
|
|
}
|
|
|
|
// An internal helper class for doing compile-time loop on a tuple's
|
|
// fields.
|
|
template <size_t N>
|
|
class TuplePrefix {
|
|
public:
|
|
// TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
|
|
// iff the first N fields of matcher_tuple matches the first N
|
|
// fields of value_tuple, respectively.
|
|
template <typename MatcherTuple, typename ValueTuple>
|
|
static bool Matches(const MatcherTuple& matcher_tuple,
|
|
const ValueTuple& value_tuple) {
|
|
using ::std::tr1::get;
|
|
return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple)
|
|
&& get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple));
|
|
}
|
|
|
|
// TuplePrefix<N>::DescribeMatchFailuresTo(matchers, values, os)
|
|
// describes failures in matching the first N fields of matchers
|
|
// against the first N fields of values. If there is no failure,
|
|
// nothing will be streamed to os.
|
|
template <typename MatcherTuple, typename ValueTuple>
|
|
static void DescribeMatchFailuresTo(const MatcherTuple& matchers,
|
|
const ValueTuple& values,
|
|
::std::ostream* os) {
|
|
using ::std::tr1::tuple_element;
|
|
using ::std::tr1::get;
|
|
|
|
// First, describes failures in the first N - 1 fields.
|
|
TuplePrefix<N - 1>::DescribeMatchFailuresTo(matchers, values, os);
|
|
|
|
// Then describes the failure (if any) in the (N - 1)-th (0-based)
|
|
// field.
|
|
typename tuple_element<N - 1, MatcherTuple>::type matcher =
|
|
get<N - 1>(matchers);
|
|
typedef typename tuple_element<N - 1, ValueTuple>::type Value;
|
|
Value value = get<N - 1>(values);
|
|
if (!matcher.Matches(value)) {
|
|
// TODO(wan): include in the message the name of the parameter
|
|
// as used in MOCK_METHOD*() when possible.
|
|
*os << " Expected arg #" << N - 1 << ": ";
|
|
get<N - 1>(matchers).DescribeTo(os);
|
|
*os << "\n Actual: ";
|
|
// We remove the reference in type Value to prevent the
|
|
// universal printer from printing the address of value, which
|
|
// isn't interesting to the user most of the time. The
|
|
// matcher's ExplainMatchResultTo() method handles the case when
|
|
// the address is interesting.
|
|
internal::UniversalPrinter<GMOCK_REMOVE_REFERENCE_(Value)>::
|
|
Print(value, os);
|
|
ExplainMatchResultAsNeededTo<Value>(matcher, value, os);
|
|
*os << "\n";
|
|
}
|
|
}
|
|
};
|
|
|
|
// The base case.
|
|
template <>
|
|
class TuplePrefix<0> {
|
|
public:
|
|
template <typename MatcherTuple, typename ValueTuple>
|
|
static bool Matches(const MatcherTuple& /* matcher_tuple */,
|
|
const ValueTuple& /* value_tuple */) {
|
|
return true;
|
|
}
|
|
|
|
template <typename MatcherTuple, typename ValueTuple>
|
|
static void DescribeMatchFailuresTo(const MatcherTuple& /* matchers */,
|
|
const ValueTuple& /* values */,
|
|
::std::ostream* /* os */) {}
|
|
};
|
|
|
|
// TupleMatches(matcher_tuple, value_tuple) returns true iff all
|
|
// matchers in matcher_tuple match the corresponding fields in
|
|
// value_tuple. It is a compiler error if matcher_tuple and
|
|
// value_tuple have different number of fields or incompatible field
|
|
// types.
|
|
template <typename MatcherTuple, typename ValueTuple>
|
|
bool TupleMatches(const MatcherTuple& matcher_tuple,
|
|
const ValueTuple& value_tuple) {
|
|
using ::std::tr1::tuple_size;
|
|
// Makes sure that matcher_tuple and value_tuple have the same
|
|
// number of fields.
|
|
GMOCK_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value ==
|
|
tuple_size<ValueTuple>::value,
|
|
matcher_and_value_have_different_numbers_of_fields);
|
|
return TuplePrefix<tuple_size<ValueTuple>::value>::
|
|
Matches(matcher_tuple, value_tuple);
|
|
}
|
|
|
|
// Describes failures in matching matchers against values. If there
|
|
// is no failure, nothing will be streamed to os.
|
|
template <typename MatcherTuple, typename ValueTuple>
|
|
void DescribeMatchFailureTupleTo(const MatcherTuple& matchers,
|
|
const ValueTuple& values,
|
|
::std::ostream* os) {
|
|
using ::std::tr1::tuple_size;
|
|
TuplePrefix<tuple_size<MatcherTuple>::value>::DescribeMatchFailuresTo(
|
|
matchers, values, os);
|
|
}
|
|
|
|
// The MatcherCastImpl class template is a helper for implementing
|
|
// MatcherCast(). We need this helper in order to partially
|
|
// specialize the implementation of MatcherCast() (C++ allows
|
|
// class/struct templates to be partially specialized, but not
|
|
// function templates.).
|
|
|
|
// This general version is used when MatcherCast()'s argument is a
|
|
// polymorphic matcher (i.e. something that can be converted to a
|
|
// Matcher but is not one yet; for example, Eq(value)).
|
|
template <typename T, typename M>
|
|
class MatcherCastImpl {
|
|
public:
|
|
static Matcher<T> Cast(M polymorphic_matcher) {
|
|
return Matcher<T>(polymorphic_matcher);
|
|
}
|
|
};
|
|
|
|
// This more specialized version is used when MatcherCast()'s argument
|
|
// is already a Matcher. This only compiles when type T can be
|
|
// statically converted to type U.
|
|
template <typename T, typename U>
|
|
class MatcherCastImpl<T, Matcher<U> > {
|
|
public:
|
|
static Matcher<T> Cast(const Matcher<U>& source_matcher) {
|
|
return Matcher<T>(new Impl(source_matcher));
|
|
}
|
|
private:
|
|
class Impl : public MatcherInterface<T> {
|
|
public:
|
|
explicit Impl(const Matcher<U>& source_matcher)
|
|
: source_matcher_(source_matcher) {}
|
|
|
|
// We delegate the matching logic to the source matcher.
|
|
virtual bool Matches(T x) const {
|
|
return source_matcher_.Matches(static_cast<U>(x));
|
|
}
|
|
|
|
virtual void DescribeTo(::std::ostream* os) const {
|
|
source_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
virtual void DescribeNegationTo(::std::ostream* os) const {
|
|
source_matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
|
|
source_matcher_.ExplainMatchResultTo(static_cast<U>(x), os);
|
|
}
|
|
private:
|
|
const Matcher<U> source_matcher_;
|
|
};
|
|
};
|
|
|
|
// This even more specialized version is used for efficiently casting
|
|
// a matcher to its own type.
|
|
template <typename T>
|
|
class MatcherCastImpl<T, Matcher<T> > {
|
|
public:
|
|
static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
|
|
};
|
|
|
|
// Implements A<T>().
|
|
template <typename T>
|
|
class AnyMatcherImpl : public MatcherInterface<T> {
|
|
public:
|
|
virtual bool Matches(T /* x */) const { return true; }
|
|
virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; }
|
|
virtual void DescribeNegationTo(::std::ostream* os) const {
|
|
// This is mostly for completeness' safe, as it's not very useful
|
|
// to write Not(A<bool>()). However we cannot completely rule out
|
|
// such a possibility, and it doesn't hurt to be prepared.
|
|
*os << "never matches";
|
|
}
|
|
};
|
|
|
|
// Implements _, a matcher that matches any value of any
|
|
// type. This is a polymorphic matcher, so we need a template type
|
|
// conversion operator to make it appearing as a Matcher<T> for any
|
|
// type T.
|
|
class AnythingMatcher {
|
|
public:
|
|
template <typename T>
|
|
operator Matcher<T>() const { return A<T>(); }
|
|
};
|
|
|
|
// Implements a matcher that compares a given value with a
|
|
// pre-supplied value using one of the ==, <=, <, etc, operators. The
|
|
// two values being compared don't have to have the same type.
|
|
//
|
|
// The matcher defined here is polymorphic (for example, Eq(5) can be
|
|
// used to match an int, a short, a double, etc). Therefore we use
|
|
// a template type conversion operator in the implementation.
|
|
//
|
|
// We define this as a macro in order to eliminate duplicated source
|
|
// code.
|
|
//
|
|
// The following template definition assumes that the Rhs parameter is
|
|
// a "bare" type (i.e. neither 'const T' nor 'T&').
|
|
#define GMOCK_IMPLEMENT_COMPARISON_MATCHER_(name, op, relation) \
|
|
template <typename Rhs> class name##Matcher { \
|
|
public: \
|
|
explicit name##Matcher(const Rhs& rhs) : rhs_(rhs) {} \
|
|
template <typename Lhs> \
|
|
operator Matcher<Lhs>() const { \
|
|
return MakeMatcher(new Impl<Lhs>(rhs_)); \
|
|
} \
|
|
private: \
|
|
template <typename Lhs> \
|
|
class Impl : public MatcherInterface<Lhs> { \
|
|
public: \
|
|
explicit Impl(const Rhs& rhs) : rhs_(rhs) {} \
|
|
virtual bool Matches(Lhs lhs) const { return lhs op rhs_; } \
|
|
virtual void DescribeTo(::std::ostream* os) const { \
|
|
*os << "is " relation " "; \
|
|
UniversalPrinter<Rhs>::Print(rhs_, os); \
|
|
} \
|
|
virtual void DescribeNegationTo(::std::ostream* os) const { \
|
|
*os << "is not " relation " "; \
|
|
UniversalPrinter<Rhs>::Print(rhs_, os); \
|
|
} \
|
|
private: \
|
|
Rhs rhs_; \
|
|
}; \
|
|
Rhs rhs_; \
|
|
}
|
|
|
|
// Implements Eq(v), Ge(v), Gt(v), Le(v), Lt(v), and Ne(v)
|
|
// respectively.
|
|
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Eq, ==, "equal to");
|
|
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ge, >=, "greater than or equal to");
|
|
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Gt, >, "greater than");
|
|
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Le, <=, "less than or equal to");
|
|
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Lt, <, "less than");
|
|
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ne, !=, "not equal to");
|
|
|
|
#undef GMOCK_IMPLEMENT_COMPARISON_MATCHER_
|
|
|
|
// Implements the polymorphic NotNull() matcher, which matches any
|
|
// pointer that is not NULL.
|
|
class NotNullMatcher {
|
|
public:
|
|
template <typename T>
|
|
bool Matches(T* p) const { return p != NULL; }
|
|
|
|
void DescribeTo(::std::ostream* os) const { *os << "is not NULL"; }
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "is NULL";
|
|
}
|
|
};
|
|
|
|
// Ref(variable) matches any argument that is a reference to
|
|
// 'variable'. This matcher is polymorphic as it can match any
|
|
// super type of the type of 'variable'.
|
|
//
|
|
// The RefMatcher template class implements Ref(variable). It can
|
|
// only be instantiated with a reference type. This prevents a user
|
|
// from mistakenly using Ref(x) to match a non-reference function
|
|
// argument. For example, the following will righteously cause a
|
|
// compiler error:
|
|
//
|
|
// int n;
|
|
// Matcher<int> m1 = Ref(n); // This won't compile.
|
|
// Matcher<int&> m2 = Ref(n); // This will compile.
|
|
template <typename T>
|
|
class RefMatcher;
|
|
|
|
template <typename T>
|
|
class RefMatcher<T&> {
|
|
// Google Mock is a generic framework and thus needs to support
|
|
// mocking any function types, including those that take non-const
|
|
// reference arguments. Therefore the template parameter T (and
|
|
// Super below) can be instantiated to either a const type or a
|
|
// non-const type.
|
|
public:
|
|
// RefMatcher() takes a T& instead of const T&, as we want the
|
|
// compiler to catch using Ref(const_value) as a matcher for a
|
|
// non-const reference.
|
|
explicit RefMatcher(T& x) : object_(x) {} // NOLINT
|
|
|
|
template <typename Super>
|
|
operator Matcher<Super&>() const {
|
|
// By passing object_ (type T&) to Impl(), which expects a Super&,
|
|
// we make sure that Super is a super type of T. In particular,
|
|
// this catches using Ref(const_value) as a matcher for a
|
|
// non-const reference, as you cannot implicitly convert a const
|
|
// reference to a non-const reference.
|
|
return MakeMatcher(new Impl<Super>(object_));
|
|
}
|
|
private:
|
|
template <typename Super>
|
|
class Impl : public MatcherInterface<Super&> {
|
|
public:
|
|
explicit Impl(Super& x) : object_(x) {} // NOLINT
|
|
|
|
// Matches() takes a Super& (as opposed to const Super&) in
|
|
// order to match the interface MatcherInterface<Super&>.
|
|
virtual bool Matches(Super& x) const { return &x == &object_; } // NOLINT
|
|
|
|
virtual void DescribeTo(::std::ostream* os) const {
|
|
*os << "references the variable ";
|
|
UniversalPrinter<Super&>::Print(object_, os);
|
|
}
|
|
|
|
virtual void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "does not reference the variable ";
|
|
UniversalPrinter<Super&>::Print(object_, os);
|
|
}
|
|
|
|
virtual void ExplainMatchResultTo(Super& x, // NOLINT
|
|
::std::ostream* os) const {
|
|
*os << "is located @" << static_cast<const void*>(&x);
|
|
}
|
|
private:
|
|
const Super& object_;
|
|
};
|
|
|
|
T& object_;
|
|
};
|
|
|
|
// Polymorphic helper functions for narrow and wide string matchers.
|
|
inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
|
|
return String::CaseInsensitiveCStringEquals(lhs, rhs);
|
|
}
|
|
|
|
inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
|
|
const wchar_t* rhs) {
|
|
return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
|
|
}
|
|
|
|
// String comparison for narrow or wide strings that can have embedded NUL
|
|
// characters.
|
|
template <typename StringType>
|
|
bool CaseInsensitiveStringEquals(const StringType& s1,
|
|
const StringType& s2) {
|
|
// Are the heads equal?
|
|
if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
|
|
return false;
|
|
}
|
|
|
|
// Skip the equal heads.
|
|
const typename StringType::value_type nul = 0;
|
|
const size_t i1 = s1.find(nul), i2 = s2.find(nul);
|
|
|
|
// Are we at the end of either s1 or s2?
|
|
if (i1 == StringType::npos || i2 == StringType::npos) {
|
|
return i1 == i2;
|
|
}
|
|
|
|
// Are the tails equal?
|
|
return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
|
|
}
|
|
|
|
// String matchers.
|
|
|
|
// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
|
|
template <typename StringType>
|
|
class StrEqualityMatcher {
|
|
public:
|
|
typedef typename StringType::const_pointer ConstCharPointer;
|
|
|
|
StrEqualityMatcher(const StringType& str, bool expect_eq,
|
|
bool case_sensitive)
|
|
: string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {}
|
|
|
|
// When expect_eq_ is true, returns true iff s is equal to string_;
|
|
// otherwise returns true iff s is not equal to string_.
|
|
bool Matches(ConstCharPointer s) const {
|
|
if (s == NULL) {
|
|
return !expect_eq_;
|
|
}
|
|
return Matches(StringType(s));
|
|
}
|
|
|
|
bool Matches(const StringType& s) const {
|
|
const bool eq = case_sensitive_ ? s == string_ :
|
|
CaseInsensitiveStringEquals(s, string_);
|
|
return expect_eq_ == eq;
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
DescribeToHelper(expect_eq_, os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
DescribeToHelper(!expect_eq_, os);
|
|
}
|
|
private:
|
|
void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
|
|
*os << "is ";
|
|
if (!expect_eq) {
|
|
*os << "not ";
|
|
}
|
|
*os << "equal to ";
|
|
if (!case_sensitive_) {
|
|
*os << "(ignoring case) ";
|
|
}
|
|
UniversalPrinter<StringType>::Print(string_, os);
|
|
}
|
|
|
|
const StringType string_;
|
|
const bool expect_eq_;
|
|
const bool case_sensitive_;
|
|
};
|
|
|
|
// Implements the polymorphic HasSubstr(substring) matcher, which
|
|
// can be used as a Matcher<T> as long as T can be converted to a
|
|
// string.
|
|
template <typename StringType>
|
|
class HasSubstrMatcher {
|
|
public:
|
|
typedef typename StringType::const_pointer ConstCharPointer;
|
|
|
|
explicit HasSubstrMatcher(const StringType& substring)
|
|
: substring_(substring) {}
|
|
|
|
// These overloaded methods allow HasSubstr(substring) to be used as a
|
|
// Matcher<T> as long as T can be converted to string. Returns true
|
|
// iff s contains substring_ as a substring.
|
|
bool Matches(ConstCharPointer s) const {
|
|
return s != NULL && Matches(StringType(s));
|
|
}
|
|
|
|
bool Matches(const StringType& s) const {
|
|
return s.find(substring_) != StringType::npos;
|
|
}
|
|
|
|
// Describes what this matcher matches.
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "has substring ";
|
|
UniversalPrinter<StringType>::Print(substring_, os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "has no substring ";
|
|
UniversalPrinter<StringType>::Print(substring_, os);
|
|
}
|
|
private:
|
|
const StringType substring_;
|
|
};
|
|
|
|
// Implements the polymorphic StartsWith(substring) matcher, which
|
|
// can be used as a Matcher<T> as long as T can be converted to a
|
|
// string.
|
|
template <typename StringType>
|
|
class StartsWithMatcher {
|
|
public:
|
|
typedef typename StringType::const_pointer ConstCharPointer;
|
|
|
|
explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
|
|
}
|
|
|
|
// These overloaded methods allow StartsWith(prefix) to be used as a
|
|
// Matcher<T> as long as T can be converted to string. Returns true
|
|
// iff s starts with prefix_.
|
|
bool Matches(ConstCharPointer s) const {
|
|
return s != NULL && Matches(StringType(s));
|
|
}
|
|
|
|
bool Matches(const StringType& s) const {
|
|
return s.length() >= prefix_.length() &&
|
|
s.substr(0, prefix_.length()) == prefix_;
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "starts with ";
|
|
UniversalPrinter<StringType>::Print(prefix_, os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "doesn't start with ";
|
|
UniversalPrinter<StringType>::Print(prefix_, os);
|
|
}
|
|
private:
|
|
const StringType prefix_;
|
|
};
|
|
|
|
// Implements the polymorphic EndsWith(substring) matcher, which
|
|
// can be used as a Matcher<T> as long as T can be converted to a
|
|
// string.
|
|
template <typename StringType>
|
|
class EndsWithMatcher {
|
|
public:
|
|
typedef typename StringType::const_pointer ConstCharPointer;
|
|
|
|
explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
|
|
|
|
// These overloaded methods allow EndsWith(suffix) to be used as a
|
|
// Matcher<T> as long as T can be converted to string. Returns true
|
|
// iff s ends with suffix_.
|
|
bool Matches(ConstCharPointer s) const {
|
|
return s != NULL && Matches(StringType(s));
|
|
}
|
|
|
|
bool Matches(const StringType& s) const {
|
|
return s.length() >= suffix_.length() &&
|
|
s.substr(s.length() - suffix_.length()) == suffix_;
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "ends with ";
|
|
UniversalPrinter<StringType>::Print(suffix_, os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "doesn't end with ";
|
|
UniversalPrinter<StringType>::Print(suffix_, os);
|
|
}
|
|
private:
|
|
const StringType suffix_;
|
|
};
|
|
|
|
#if GMOCK_HAS_REGEX
|
|
|
|
// Implements polymorphic matchers MatchesRegex(regex) and
|
|
// ContainsRegex(regex), which can be used as a Matcher<T> as long as
|
|
// T can be converted to a string.
|
|
class MatchesRegexMatcher {
|
|
public:
|
|
MatchesRegexMatcher(const RE* regex, bool full_match)
|
|
: regex_(regex), full_match_(full_match) {}
|
|
|
|
// These overloaded methods allow MatchesRegex(regex) to be used as
|
|
// a Matcher<T> as long as T can be converted to string. Returns
|
|
// true iff s matches regular expression regex. When full_match_ is
|
|
// true, a full match is done; otherwise a partial match is done.
|
|
bool Matches(const char* s) const {
|
|
return s != NULL && Matches(internal::string(s));
|
|
}
|
|
|
|
bool Matches(const internal::string& s) const {
|
|
return full_match_ ? RE::FullMatch(s, *regex_) :
|
|
RE::PartialMatch(s, *regex_);
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << (full_match_ ? "matches" : "contains")
|
|
<< " regular expression ";
|
|
UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "doesn't " << (full_match_ ? "match" : "contain")
|
|
<< " regular expression ";
|
|
UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
|
|
}
|
|
private:
|
|
const internal::linked_ptr<const RE> regex_;
|
|
const bool full_match_;
|
|
};
|
|
|
|
#endif // GMOCK_HAS_REGEX
|
|
|
|
// Implements a matcher that compares the two fields of a 2-tuple
|
|
// using one of the ==, <=, <, etc, operators. The two fields being
|
|
// compared don't have to have the same type.
|
|
//
|
|
// The matcher defined here is polymorphic (for example, Eq() can be
|
|
// used to match a tuple<int, short>, a tuple<const long&, double>,
|
|
// etc). Therefore we use a template type conversion operator in the
|
|
// implementation.
|
|
//
|
|
// We define this as a macro in order to eliminate duplicated source
|
|
// code.
|
|
#define GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(name, op, relation) \
|
|
class name##2Matcher { \
|
|
public: \
|
|
template <typename T1, typename T2> \
|
|
operator Matcher<const ::std::tr1::tuple<T1, T2>&>() const { \
|
|
return MakeMatcher(new Impl<T1, T2>); \
|
|
} \
|
|
private: \
|
|
template <typename T1, typename T2> \
|
|
class Impl : public MatcherInterface<const ::std::tr1::tuple<T1, T2>&> { \
|
|
public: \
|
|
virtual bool Matches(const ::std::tr1::tuple<T1, T2>& args) const { \
|
|
return ::std::tr1::get<0>(args) op ::std::tr1::get<1>(args); \
|
|
} \
|
|
virtual void DescribeTo(::std::ostream* os) const { \
|
|
*os << "argument #0 is " relation " argument #1"; \
|
|
} \
|
|
virtual void DescribeNegationTo(::std::ostream* os) const { \
|
|
*os << "argument #0 is not " relation " argument #1"; \
|
|
} \
|
|
}; \
|
|
}
|
|
|
|
// Implements Eq(), Ge(), Gt(), Le(), Lt(), and Ne() respectively.
|
|
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Eq, ==, "equal to");
|
|
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ge, >=, "greater than or equal to");
|
|
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Gt, >, "greater than");
|
|
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Le, <=, "less than or equal to");
|
|
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Lt, <, "less than");
|
|
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ne, !=, "not equal to");
|
|
|
|
#undef GMOCK_IMPLEMENT_COMPARISON2_MATCHER_
|
|
|
|
// Implements the Not(m) matcher, which matches a value that doesn't
|
|
// match matcher m.
|
|
template <typename InnerMatcher>
|
|
class NotMatcher {
|
|
public:
|
|
explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
|
|
|
|
// This template type conversion operator allows Not(m) to be used
|
|
// to match any type m can match.
|
|
template <typename T>
|
|
operator Matcher<T>() const {
|
|
return Matcher<T>(new Impl<T>(matcher_));
|
|
}
|
|
private:
|
|
// Implements the Not(...) matcher for a particular argument type T.
|
|
template <typename T>
|
|
class Impl : public MatcherInterface<T> {
|
|
public:
|
|
explicit Impl(const Matcher<T>& matcher) : matcher_(matcher) {}
|
|
|
|
virtual bool Matches(T x) const {
|
|
return !matcher_.Matches(x);
|
|
}
|
|
|
|
virtual void DescribeTo(::std::ostream* os) const {
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
virtual void DescribeNegationTo(::std::ostream* os) const {
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
|
|
matcher_.ExplainMatchResultTo(x, os);
|
|
}
|
|
private:
|
|
const Matcher<T> matcher_;
|
|
};
|
|
|
|
InnerMatcher matcher_;
|
|
};
|
|
|
|
// Used for implementing the AllOf(m_1, ..., m_n) matcher, which
|
|
// matches a value that matches all of the matchers m_1, ..., and m_n.
|
|
template <typename Matcher1, typename Matcher2>
|
|
class BothOfMatcher {
|
|
public:
|
|
BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
|
|
: matcher1_(matcher1), matcher2_(matcher2) {}
|
|
|
|
// This template type conversion operator allows a
|
|
// BothOfMatcher<Matcher1, Matcher2> object to match any type that
|
|
// both Matcher1 and Matcher2 can match.
|
|
template <typename T>
|
|
operator Matcher<T>() const {
|
|
return Matcher<T>(new Impl<T>(matcher1_, matcher2_));
|
|
}
|
|
private:
|
|
// Implements the AllOf(m1, m2) matcher for a particular argument
|
|
// type T.
|
|
template <typename T>
|
|
class Impl : public MatcherInterface<T> {
|
|
public:
|
|
Impl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
|
|
: matcher1_(matcher1), matcher2_(matcher2) {}
|
|
|
|
virtual bool Matches(T x) const {
|
|
return matcher1_.Matches(x) && matcher2_.Matches(x);
|
|
}
|
|
|
|
virtual void DescribeTo(::std::ostream* os) const {
|
|
*os << "(";
|
|
matcher1_.DescribeTo(os);
|
|
*os << ") and (";
|
|
matcher2_.DescribeTo(os);
|
|
*os << ")";
|
|
}
|
|
|
|
virtual void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "not ";
|
|
DescribeTo(os);
|
|
}
|
|
|
|
virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
|
|
if (Matches(x)) {
|
|
// When both matcher1_ and matcher2_ match x, we need to
|
|
// explain why *both* of them match.
|
|
::std::stringstream ss1;
|
|
matcher1_.ExplainMatchResultTo(x, &ss1);
|
|
const internal::string s1 = ss1.str();
|
|
|
|
::std::stringstream ss2;
|
|
matcher2_.ExplainMatchResultTo(x, &ss2);
|
|
const internal::string s2 = ss2.str();
|
|
|
|
if (s1 == "") {
|
|
*os << s2;
|
|
} else {
|
|
*os << s1;
|
|
if (s2 != "") {
|
|
*os << "; " << s2;
|
|
}
|
|
}
|
|
} else {
|
|
// Otherwise we only need to explain why *one* of them fails
|
|
// to match.
|
|
if (!matcher1_.Matches(x)) {
|
|
matcher1_.ExplainMatchResultTo(x, os);
|
|
} else {
|
|
matcher2_.ExplainMatchResultTo(x, os);
|
|
}
|
|
}
|
|
}
|
|
private:
|
|
const Matcher<T> matcher1_;
|
|
const Matcher<T> matcher2_;
|
|
};
|
|
|
|
Matcher1 matcher1_;
|
|
Matcher2 matcher2_;
|
|
};
|
|
|
|
// Used for implementing the AnyOf(m_1, ..., m_n) matcher, which
|
|
// matches a value that matches at least one of the matchers m_1, ...,
|
|
// and m_n.
|
|
template <typename Matcher1, typename Matcher2>
|
|
class EitherOfMatcher {
|
|
public:
|
|
EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
|
|
: matcher1_(matcher1), matcher2_(matcher2) {}
|
|
|
|
// This template type conversion operator allows a
|
|
// EitherOfMatcher<Matcher1, Matcher2> object to match any type that
|
|
// both Matcher1 and Matcher2 can match.
|
|
template <typename T>
|
|
operator Matcher<T>() const {
|
|
return Matcher<T>(new Impl<T>(matcher1_, matcher2_));
|
|
}
|
|
private:
|
|
// Implements the AnyOf(m1, m2) matcher for a particular argument
|
|
// type T.
|
|
template <typename T>
|
|
class Impl : public MatcherInterface<T> {
|
|
public:
|
|
Impl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
|
|
: matcher1_(matcher1), matcher2_(matcher2) {}
|
|
|
|
virtual bool Matches(T x) const {
|
|
return matcher1_.Matches(x) || matcher2_.Matches(x);
|
|
}
|
|
|
|
virtual void DescribeTo(::std::ostream* os) const {
|
|
*os << "(";
|
|
matcher1_.DescribeTo(os);
|
|
*os << ") or (";
|
|
matcher2_.DescribeTo(os);
|
|
*os << ")";
|
|
}
|
|
|
|
virtual void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "not ";
|
|
DescribeTo(os);
|
|
}
|
|
|
|
virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
|
|
if (Matches(x)) {
|
|
// If either matcher1_ or matcher2_ matches x, we just need
|
|
// to explain why *one* of them matches.
|
|
if (matcher1_.Matches(x)) {
|
|
matcher1_.ExplainMatchResultTo(x, os);
|
|
} else {
|
|
matcher2_.ExplainMatchResultTo(x, os);
|
|
}
|
|
} else {
|
|
// Otherwise we need to explain why *neither* matches.
|
|
::std::stringstream ss1;
|
|
matcher1_.ExplainMatchResultTo(x, &ss1);
|
|
const internal::string s1 = ss1.str();
|
|
|
|
::std::stringstream ss2;
|
|
matcher2_.ExplainMatchResultTo(x, &ss2);
|
|
const internal::string s2 = ss2.str();
|
|
|
|
if (s1 == "") {
|
|
*os << s2;
|
|
} else {
|
|
*os << s1;
|
|
if (s2 != "") {
|
|
*os << "; " << s2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
private:
|
|
const Matcher<T> matcher1_;
|
|
const Matcher<T> matcher2_;
|
|
};
|
|
|
|
Matcher1 matcher1_;
|
|
Matcher2 matcher2_;
|
|
};
|
|
|
|
// Used for implementing Truly(pred), which turns a predicate into a
|
|
// matcher.
|
|
template <typename Predicate>
|
|
class TrulyMatcher {
|
|
public:
|
|
explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
|
|
|
|
// This method template allows Truly(pred) to be used as a matcher
|
|
// for type T where T is the argument type of predicate 'pred'. The
|
|
// argument is passed by reference as the predicate may be
|
|
// interested in the address of the argument.
|
|
template <typename T>
|
|
bool Matches(T& x) const {
|
|
#if GTEST_OS_WINDOWS
|
|
// MSVC warns about converting a value into bool (warning 4800).
|
|
#pragma warning(push) // Saves the current warning state.
|
|
#pragma warning(disable:4800) // Temporarily disables warning 4800.
|
|
#endif // GTEST_OS_WINDOWS
|
|
return predicate_(x);
|
|
#if GTEST_OS_WINDOWS
|
|
#pragma warning(pop) // Restores the warning state.
|
|
#endif // GTEST_OS_WINDOWS
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "satisfies the given predicate";
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "doesn't satisfy the given predicate";
|
|
}
|
|
private:
|
|
Predicate predicate_;
|
|
};
|
|
|
|
// Used for implementing Matches(matcher), which turns a matcher into
|
|
// a predicate.
|
|
template <typename M>
|
|
class MatcherAsPredicate {
|
|
public:
|
|
explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
|
|
|
|
// This template operator() allows Matches(m) to be used as a
|
|
// predicate on type T where m is a matcher on type T.
|
|
//
|
|
// The argument x is passed by reference instead of by value, as
|
|
// some matcher may be interested in its address (e.g. as in
|
|
// Matches(Ref(n))(x)).
|
|
template <typename T>
|
|
bool operator()(const T& x) const {
|
|
// We let matcher_ commit to a particular type here instead of
|
|
// when the MatcherAsPredicate object was constructed. This
|
|
// allows us to write Matches(m) where m is a polymorphic matcher
|
|
// (e.g. Eq(5)).
|
|
//
|
|
// If we write Matcher<T>(matcher_).Matches(x) here, it won't
|
|
// compile when matcher_ has type Matcher<const T&>; if we write
|
|
// Matcher<const T&>(matcher_).Matches(x) here, it won't compile
|
|
// when matcher_ has type Matcher<T>; if we just write
|
|
// matcher_.Matches(x), it won't compile when matcher_ is
|
|
// polymorphic, e.g. Eq(5).
|
|
//
|
|
// MatcherCast<const T&>() is necessary for making the code work
|
|
// in all of the above situations.
|
|
return MatcherCast<const T&>(matcher_).Matches(x);
|
|
}
|
|
private:
|
|
M matcher_;
|
|
};
|
|
|
|
// For implementing ASSERT_THAT() and EXPECT_THAT(). The template
|
|
// argument M must be a type that can be converted to a matcher.
|
|
template <typename M>
|
|
class PredicateFormatterFromMatcher {
|
|
public:
|
|
explicit PredicateFormatterFromMatcher(const M& m) : matcher_(m) {}
|
|
|
|
// This template () operator allows a PredicateFormatterFromMatcher
|
|
// object to act as a predicate-formatter suitable for using with
|
|
// Google Test's EXPECT_PRED_FORMAT1() macro.
|
|
template <typename T>
|
|
AssertionResult operator()(const char* value_text, const T& x) const {
|
|
// We convert matcher_ to a Matcher<const T&> *now* instead of
|
|
// when the PredicateFormatterFromMatcher object was constructed,
|
|
// as matcher_ may be polymorphic (e.g. NotNull()) and we won't
|
|
// know which type to instantiate it to until we actually see the
|
|
// type of x here.
|
|
//
|
|
// We write MatcherCast<const T&>(matcher_) instead of
|
|
// Matcher<const T&>(matcher_), as the latter won't compile when
|
|
// matcher_ has type Matcher<T> (e.g. An<int>()).
|
|
const Matcher<const T&> matcher = MatcherCast<const T&>(matcher_);
|
|
if (matcher.Matches(x)) {
|
|
return AssertionSuccess();
|
|
} else {
|
|
::std::stringstream ss;
|
|
ss << "Value of: " << value_text << "\n"
|
|
<< "Expected: ";
|
|
matcher.DescribeTo(&ss);
|
|
ss << "\n Actual: ";
|
|
UniversalPrinter<T>::Print(x, &ss);
|
|
ExplainMatchResultAsNeededTo<const T&>(matcher, x, &ss);
|
|
return AssertionFailure(Message() << ss.str());
|
|
}
|
|
}
|
|
private:
|
|
const M matcher_;
|
|
};
|
|
|
|
// A helper function for converting a matcher to a predicate-formatter
|
|
// without the user needing to explicitly write the type. This is
|
|
// used for implementing ASSERT_THAT() and EXPECT_THAT().
|
|
template <typename M>
|
|
inline PredicateFormatterFromMatcher<M>
|
|
MakePredicateFormatterFromMatcher(const M& matcher) {
|
|
return PredicateFormatterFromMatcher<M>(matcher);
|
|
}
|
|
|
|
// Implements the polymorphic floating point equality matcher, which
|
|
// matches two float values using ULP-based approximation. The
|
|
// template is meant to be instantiated with FloatType being either
|
|
// float or double.
|
|
template <typename FloatType>
|
|
class FloatingEqMatcher {
|
|
public:
|
|
// Constructor for FloatingEqMatcher.
|
|
// The matcher's input will be compared with rhs. The matcher treats two
|
|
// NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
|
|
// equality comparisons between NANs will always return false.
|
|
FloatingEqMatcher(FloatType rhs, bool nan_eq_nan) :
|
|
rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
|
|
|
|
// Implements floating point equality matcher as a Matcher<T>.
|
|
template <typename T>
|
|
class Impl : public MatcherInterface<T> {
|
|
public:
|
|
Impl(FloatType rhs, bool nan_eq_nan) :
|
|
rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
|
|
|
|
virtual bool Matches(T value) const {
|
|
const FloatingPoint<FloatType> lhs(value), rhs(rhs_);
|
|
|
|
// Compares NaNs first, if nan_eq_nan_ is true.
|
|
if (nan_eq_nan_ && lhs.is_nan()) {
|
|
return rhs.is_nan();
|
|
}
|
|
|
|
return lhs.AlmostEquals(rhs);
|
|
}
|
|
|
|
virtual void DescribeTo(::std::ostream* os) const {
|
|
// os->precision() returns the previously set precision, which we
|
|
// store to restore the ostream to its original configuration
|
|
// after outputting.
|
|
const ::std::streamsize old_precision = os->precision(
|
|
::std::numeric_limits<FloatType>::digits10 + 2);
|
|
if (FloatingPoint<FloatType>(rhs_).is_nan()) {
|
|
if (nan_eq_nan_) {
|
|
*os << "is NaN";
|
|
} else {
|
|
*os << "never matches";
|
|
}
|
|
} else {
|
|
*os << "is approximately " << rhs_;
|
|
}
|
|
os->precision(old_precision);
|
|
}
|
|
|
|
virtual void DescribeNegationTo(::std::ostream* os) const {
|
|
// As before, get original precision.
|
|
const ::std::streamsize old_precision = os->precision(
|
|
::std::numeric_limits<FloatType>::digits10 + 2);
|
|
if (FloatingPoint<FloatType>(rhs_).is_nan()) {
|
|
if (nan_eq_nan_) {
|
|
*os << "is not NaN";
|
|
} else {
|
|
*os << "is anything";
|
|
}
|
|
} else {
|
|
*os << "is not approximately " << rhs_;
|
|
}
|
|
// Restore original precision.
|
|
os->precision(old_precision);
|
|
}
|
|
|
|
private:
|
|
const FloatType rhs_;
|
|
const bool nan_eq_nan_;
|
|
};
|
|
|
|
// The following 3 type conversion operators allow FloatEq(rhs) and
|
|
// NanSensitiveFloatEq(rhs) to be used as a Matcher<float>, a
|
|
// Matcher<const float&>, or a Matcher<float&>, but nothing else.
|
|
// (While Google's C++ coding style doesn't allow arguments passed
|
|
// by non-const reference, we may see them in code not conforming to
|
|
// the style. Therefore Google Mock needs to support them.)
|
|
operator Matcher<FloatType>() const {
|
|
return MakeMatcher(new Impl<FloatType>(rhs_, nan_eq_nan_));
|
|
}
|
|
|
|
operator Matcher<const FloatType&>() const {
|
|
return MakeMatcher(new Impl<const FloatType&>(rhs_, nan_eq_nan_));
|
|
}
|
|
|
|
operator Matcher<FloatType&>() const {
|
|
return MakeMatcher(new Impl<FloatType&>(rhs_, nan_eq_nan_));
|
|
}
|
|
private:
|
|
const FloatType rhs_;
|
|
const bool nan_eq_nan_;
|
|
};
|
|
|
|
// Implements the Pointee(m) matcher for matching a pointer whose
|
|
// pointee matches matcher m. The pointer can be either raw or smart.
|
|
template <typename InnerMatcher>
|
|
class PointeeMatcher {
|
|
public:
|
|
explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
|
|
|
|
// This type conversion operator template allows Pointee(m) to be
|
|
// used as a matcher for any pointer type whose pointee type is
|
|
// compatible with the inner matcher, where type Pointer can be
|
|
// either a raw pointer or a smart pointer.
|
|
//
|
|
// The reason we do this instead of relying on
|
|
// MakePolymorphicMatcher() is that the latter is not flexible
|
|
// enough for implementing the DescribeTo() method of Pointee().
|
|
template <typename Pointer>
|
|
operator Matcher<Pointer>() const {
|
|
return MakeMatcher(new Impl<Pointer>(matcher_));
|
|
}
|
|
private:
|
|
// The monomorphic implementation that works for a particular pointer type.
|
|
template <typename Pointer>
|
|
class Impl : public MatcherInterface<Pointer> {
|
|
public:
|
|
typedef typename PointeeOf<GMOCK_REMOVE_CONST_( // NOLINT
|
|
GMOCK_REMOVE_REFERENCE_(Pointer))>::type Pointee;
|
|
|
|
explicit Impl(const InnerMatcher& matcher)
|
|
: matcher_(MatcherCast<const Pointee&>(matcher)) {}
|
|
|
|
virtual bool Matches(Pointer p) const {
|
|
return GetRawPointer(p) != NULL && matcher_.Matches(*p);
|
|
}
|
|
|
|
virtual void DescribeTo(::std::ostream* os) const {
|
|
*os << "points to a value that ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
virtual void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "does not point to a value that ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
virtual void ExplainMatchResultTo(Pointer pointer,
|
|
::std::ostream* os) const {
|
|
if (GetRawPointer(pointer) == NULL)
|
|
return;
|
|
|
|
::std::stringstream ss;
|
|
matcher_.ExplainMatchResultTo(*pointer, &ss);
|
|
const internal::string s = ss.str();
|
|
if (s != "") {
|
|
*os << "points to a value that " << s;
|
|
}
|
|
}
|
|
private:
|
|
const Matcher<const Pointee&> matcher_;
|
|
};
|
|
|
|
const InnerMatcher matcher_;
|
|
};
|
|
|
|
// Implements the Field() matcher for matching a field (i.e. member
|
|
// variable) of an object.
|
|
template <typename Class, typename FieldType>
|
|
class FieldMatcher {
|
|
public:
|
|
FieldMatcher(FieldType Class::*field,
|
|
const Matcher<const FieldType&>& matcher)
|
|
: field_(field), matcher_(matcher) {}
|
|
|
|
// Returns true iff the inner matcher matches obj.field.
|
|
bool Matches(const Class& obj) const {
|
|
return matcher_.Matches(obj.*field_);
|
|
}
|
|
|
|
// Returns true iff the inner matcher matches obj->field.
|
|
bool Matches(const Class* p) const {
|
|
return (p != NULL) && matcher_.Matches(p->*field_);
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "the given field ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "the given field ";
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
void ExplainMatchResultTo(const Class& obj, ::std::ostream* os) const {
|
|
::std::stringstream ss;
|
|
matcher_.ExplainMatchResultTo(obj.*field_, &ss);
|
|
const internal::string s = ss.str();
|
|
if (s != "") {
|
|
*os << "the given field " << s;
|
|
}
|
|
}
|
|
|
|
void ExplainMatchResultTo(const Class* p, ::std::ostream* os) const {
|
|
if (p != NULL) {
|
|
ExplainMatchResultTo(*p, os);
|
|
}
|
|
}
|
|
private:
|
|
const FieldType Class::*field_;
|
|
const Matcher<const FieldType&> matcher_;
|
|
};
|
|
|
|
// Explains the result of matching an object against a field matcher.
|
|
template <typename Class, typename FieldType>
|
|
void ExplainMatchResultTo(const FieldMatcher<Class, FieldType>& matcher,
|
|
const Class& obj, ::std::ostream* os) {
|
|
matcher.ExplainMatchResultTo(obj, os);
|
|
}
|
|
|
|
// Explains the result of matching a pointer against a field matcher.
|
|
template <typename Class, typename FieldType>
|
|
void ExplainMatchResultTo(const FieldMatcher<Class, FieldType>& matcher,
|
|
const Class* p, ::std::ostream* os) {
|
|
matcher.ExplainMatchResultTo(p, os);
|
|
}
|
|
|
|
// Implements the Property() matcher for matching a property
|
|
// (i.e. return value of a getter method) of an object.
|
|
template <typename Class, typename PropertyType>
|
|
class PropertyMatcher {
|
|
public:
|
|
// The property may have a reference type, so 'const PropertyType&'
|
|
// may cause double references and fail to compile. That's why we
|
|
// need GMOCK_REFERENCE_TO_CONST, which works regardless of
|
|
// PropertyType being a reference or not.
|
|
typedef GMOCK_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty;
|
|
|
|
PropertyMatcher(PropertyType (Class::*property)() const,
|
|
const Matcher<RefToConstProperty>& matcher)
|
|
: property_(property), matcher_(matcher) {}
|
|
|
|
// Returns true iff obj.property() matches the inner matcher.
|
|
bool Matches(const Class& obj) const {
|
|
return matcher_.Matches((obj.*property_)());
|
|
}
|
|
|
|
// Returns true iff p->property() matches the inner matcher.
|
|
bool Matches(const Class* p) const {
|
|
return (p != NULL) && matcher_.Matches((p->*property_)());
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "the given property ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "the given property ";
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
void ExplainMatchResultTo(const Class& obj, ::std::ostream* os) const {
|
|
::std::stringstream ss;
|
|
matcher_.ExplainMatchResultTo((obj.*property_)(), &ss);
|
|
const internal::string s = ss.str();
|
|
if (s != "") {
|
|
*os << "the given property " << s;
|
|
}
|
|
}
|
|
|
|
void ExplainMatchResultTo(const Class* p, ::std::ostream* os) const {
|
|
if (p != NULL) {
|
|
ExplainMatchResultTo(*p, os);
|
|
}
|
|
}
|
|
private:
|
|
PropertyType (Class::*property_)() const;
|
|
const Matcher<RefToConstProperty> matcher_;
|
|
};
|
|
|
|
// Explains the result of matching an object against a property matcher.
|
|
template <typename Class, typename PropertyType>
|
|
void ExplainMatchResultTo(const PropertyMatcher<Class, PropertyType>& matcher,
|
|
const Class& obj, ::std::ostream* os) {
|
|
matcher.ExplainMatchResultTo(obj, os);
|
|
}
|
|
|
|
// Explains the result of matching a pointer against a property matcher.
|
|
template <typename Class, typename PropertyType>
|
|
void ExplainMatchResultTo(const PropertyMatcher<Class, PropertyType>& matcher,
|
|
const Class* p, ::std::ostream* os) {
|
|
matcher.ExplainMatchResultTo(p, os);
|
|
}
|
|
|
|
// Type traits specifying various features of different functors for ResultOf.
|
|
// The default template specifies features for functor objects.
|
|
// Functor classes have to typedef argument_type and result_type
|
|
// to be compatible with ResultOf.
|
|
template <typename Functor>
|
|
struct CallableTraits {
|
|
typedef typename Functor::result_type ResultType;
|
|
typedef Functor StorageType;
|
|
|
|
static void CheckIsValid(Functor functor) {}
|
|
template <typename T>
|
|
static ResultType Invoke(Functor f, T arg) { return f(arg); }
|
|
};
|
|
|
|
// Specialization for function pointers.
|
|
template <typename ArgType, typename ResType>
|
|
struct CallableTraits<ResType(*)(ArgType)> {
|
|
typedef ResType ResultType;
|
|
typedef ResType(*StorageType)(ArgType);
|
|
|
|
static void CheckIsValid(ResType(*f)(ArgType)) {
|
|
GMOCK_CHECK_(f != NULL)
|
|
<< "NULL function pointer is passed into ResultOf().";
|
|
}
|
|
template <typename T>
|
|
static ResType Invoke(ResType(*f)(ArgType), T arg) {
|
|
return (*f)(arg);
|
|
}
|
|
};
|
|
|
|
// Implements the ResultOf() matcher for matching a return value of a
|
|
// unary function of an object.
|
|
template <typename Callable>
|
|
class ResultOfMatcher {
|
|
public:
|
|
typedef typename CallableTraits<Callable>::ResultType ResultType;
|
|
|
|
ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher)
|
|
: callable_(callable), matcher_(matcher) {
|
|
CallableTraits<Callable>::CheckIsValid(callable_);
|
|
}
|
|
|
|
template <typename T>
|
|
operator Matcher<T>() const {
|
|
return Matcher<T>(new Impl<T>(callable_, matcher_));
|
|
}
|
|
|
|
private:
|
|
typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
|
|
|
|
template <typename T>
|
|
class Impl : public MatcherInterface<T> {
|
|
public:
|
|
Impl(CallableStorageType callable, const Matcher<ResultType>& matcher)
|
|
: callable_(callable), matcher_(matcher) {}
|
|
// Returns true iff callable_(obj) matches the inner matcher.
|
|
// The calling syntax is different for different types of callables
|
|
// so we abstract it in CallableTraits<Callable>::Invoke().
|
|
virtual bool Matches(T obj) const {
|
|
return matcher_.Matches(
|
|
CallableTraits<Callable>::template Invoke<T>(callable_, obj));
|
|
}
|
|
|
|
virtual void DescribeTo(::std::ostream* os) const {
|
|
*os << "result of the given callable ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
virtual void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "result of the given callable ";
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
virtual void ExplainMatchResultTo(T obj, ::std::ostream* os) const {
|
|
::std::stringstream ss;
|
|
matcher_.ExplainMatchResultTo(
|
|
CallableTraits<Callable>::template Invoke<T>(callable_, obj),
|
|
&ss);
|
|
const internal::string s = ss.str();
|
|
if (s != "")
|
|
*os << "result of the given callable " << s;
|
|
}
|
|
private:
|
|
// Functors often define operator() as non-const method even though
|
|
// they are actualy stateless. But we need to use them even when
|
|
// 'this' is a const pointer. It's the user's responsibility not to
|
|
// use stateful callables with ResultOf(), which does't guarantee
|
|
// how many times the callable will be invoked.
|
|
mutable CallableStorageType callable_;
|
|
const Matcher<ResultType> matcher_;
|
|
}; // class Impl
|
|
|
|
const CallableStorageType callable_;
|
|
const Matcher<ResultType> matcher_;
|
|
};
|
|
|
|
// Explains the result of matching a value against a functor matcher.
|
|
template <typename T, typename Callable>
|
|
void ExplainMatchResultTo(const ResultOfMatcher<Callable>& matcher,
|
|
T obj, ::std::ostream* os) {
|
|
matcher.ExplainMatchResultTo(obj, os);
|
|
}
|
|
|
|
// Implements an equality matcher for any STL-style container whose elements
|
|
// support ==. This matcher is like Eq(), but its failure explanations provide
|
|
// more detailed information that is useful when the container is used as a set.
|
|
// The failure message reports elements that are in one of the operands but not
|
|
// the other. The failure messages do not report duplicate or out-of-order
|
|
// elements in the containers (which don't properly matter to sets, but can
|
|
// occur if the containers are vectors or lists, for example).
|
|
//
|
|
// Uses the container's const_iterator, value_type, operator ==,
|
|
// begin(), and end().
|
|
template <typename Container>
|
|
class ContainerEqMatcher {
|
|
public:
|
|
explicit ContainerEqMatcher(const Container& rhs) : rhs_(rhs) {}
|
|
bool Matches(const Container& lhs) const { return lhs == rhs_; }
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "equals ";
|
|
UniversalPrinter<Container>::Print(rhs_, os);
|
|
}
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "does not equal ";
|
|
UniversalPrinter<Container>::Print(rhs_, os);
|
|
}
|
|
|
|
void ExplainMatchResultTo(const Container& lhs,
|
|
::std::ostream* os) const {
|
|
// Something is different. Check for missing values first.
|
|
bool printed_header = false;
|
|
for (typename Container::const_iterator it = lhs.begin();
|
|
it != lhs.end(); ++it) {
|
|
if (std::find(rhs_.begin(), rhs_.end(), *it) == rhs_.end()) {
|
|
if (printed_header) {
|
|
*os << ", ";
|
|
} else {
|
|
*os << "Only in actual: ";
|
|
printed_header = true;
|
|
}
|
|
UniversalPrinter<typename Container::value_type>::Print(*it, os);
|
|
}
|
|
}
|
|
|
|
// Now check for extra values.
|
|
bool printed_header2 = false;
|
|
for (typename Container::const_iterator it = rhs_.begin();
|
|
it != rhs_.end(); ++it) {
|
|
if (std::find(lhs.begin(), lhs.end(), *it) == lhs.end()) {
|
|
if (printed_header2) {
|
|
*os << ", ";
|
|
} else {
|
|
*os << (printed_header ? "; not" : "Not") << " in actual: ";
|
|
printed_header2 = true;
|
|
}
|
|
UniversalPrinter<typename Container::value_type>::Print(*it, os);
|
|
}
|
|
}
|
|
}
|
|
private:
|
|
const Container rhs_;
|
|
};
|
|
|
|
template <typename Container>
|
|
void ExplainMatchResultTo(const ContainerEqMatcher<Container>& matcher,
|
|
const Container& lhs,
|
|
::std::ostream* os) {
|
|
matcher.ExplainMatchResultTo(lhs, os);
|
|
}
|
|
|
|
} // namespace internal
|
|
|
|
// Implements MatcherCast().
|
|
template <typename T, typename M>
|
|
inline Matcher<T> MatcherCast(M matcher) {
|
|
return internal::MatcherCastImpl<T, M>::Cast(matcher);
|
|
}
|
|
|
|
// _ is a matcher that matches anything of any type.
|
|
//
|
|
// This definition is fine as:
|
|
//
|
|
// 1. The C++ standard permits using the name _ in a namespace that
|
|
// is not the global namespace or ::std.
|
|
// 2. The AnythingMatcher class has no data member or constructor,
|
|
// so it's OK to create global variables of this type.
|
|
// 3. c-style has approved of using _ in this case.
|
|
const internal::AnythingMatcher _ = {};
|
|
// Creates a matcher that matches any value of the given type T.
|
|
template <typename T>
|
|
inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); }
|
|
|
|
// Creates a matcher that matches any value of the given type T.
|
|
template <typename T>
|
|
inline Matcher<T> An() { return A<T>(); }
|
|
|
|
// Creates a polymorphic matcher that matches anything equal to x.
|
|
// Note: if the parameter of Eq() were declared as const T&, Eq("foo")
|
|
// wouldn't compile.
|
|
template <typename T>
|
|
inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); }
|
|
|
|
// Constructs a Matcher<T> from a 'value' of type T. The constructed
|
|
// matcher matches any value that's equal to 'value'.
|
|
template <typename T>
|
|
Matcher<T>::Matcher(T value) { *this = Eq(value); }
|
|
|
|
// Creates a monomorphic matcher that matches anything with type Lhs
|
|
// and equal to rhs. A user may need to use this instead of Eq(...)
|
|
// in order to resolve an overloading ambiguity.
|
|
//
|
|
// TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x))
|
|
// or Matcher<T>(x), but more readable than the latter.
|
|
//
|
|
// We could define similar monomorphic matchers for other comparison
|
|
// operations (e.g. TypedLt, TypedGe, and etc), but decided not to do
|
|
// it yet as those are used much less than Eq() in practice. A user
|
|
// can always write Matcher<T>(Lt(5)) to be explicit about the type,
|
|
// for example.
|
|
template <typename Lhs, typename Rhs>
|
|
inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); }
|
|
|
|
// Creates a polymorphic matcher that matches anything >= x.
|
|
template <typename Rhs>
|
|
inline internal::GeMatcher<Rhs> Ge(Rhs x) {
|
|
return internal::GeMatcher<Rhs>(x);
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches anything > x.
|
|
template <typename Rhs>
|
|
inline internal::GtMatcher<Rhs> Gt(Rhs x) {
|
|
return internal::GtMatcher<Rhs>(x);
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches anything <= x.
|
|
template <typename Rhs>
|
|
inline internal::LeMatcher<Rhs> Le(Rhs x) {
|
|
return internal::LeMatcher<Rhs>(x);
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches anything < x.
|
|
template <typename Rhs>
|
|
inline internal::LtMatcher<Rhs> Lt(Rhs x) {
|
|
return internal::LtMatcher<Rhs>(x);
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches anything != x.
|
|
template <typename Rhs>
|
|
inline internal::NeMatcher<Rhs> Ne(Rhs x) {
|
|
return internal::NeMatcher<Rhs>(x);
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches any non-NULL pointer.
|
|
// This is convenient as Not(NULL) doesn't compile (the compiler
|
|
// thinks that that expression is comparing a pointer with an integer).
|
|
inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
|
|
return MakePolymorphicMatcher(internal::NotNullMatcher());
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches any argument that
|
|
// references variable x.
|
|
template <typename T>
|
|
inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
|
|
return internal::RefMatcher<T&>(x);
|
|
}
|
|
|
|
// Creates a matcher that matches any double argument approximately
|
|
// equal to rhs, where two NANs are considered unequal.
|
|
inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
|
|
return internal::FloatingEqMatcher<double>(rhs, false);
|
|
}
|
|
|
|
// Creates a matcher that matches any double argument approximately
|
|
// equal to rhs, including NaN values when rhs is NaN.
|
|
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
|
|
return internal::FloatingEqMatcher<double>(rhs, true);
|
|
}
|
|
|
|
// Creates a matcher that matches any float argument approximately
|
|
// equal to rhs, where two NANs are considered unequal.
|
|
inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
|
|
return internal::FloatingEqMatcher<float>(rhs, false);
|
|
}
|
|
|
|
// Creates a matcher that matches any double argument approximately
|
|
// equal to rhs, including NaN values when rhs is NaN.
|
|
inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
|
|
return internal::FloatingEqMatcher<float>(rhs, true);
|
|
}
|
|
|
|
// Creates a matcher that matches a pointer (raw or smart) that points
|
|
// to a value that matches inner_matcher.
|
|
template <typename InnerMatcher>
|
|
inline internal::PointeeMatcher<InnerMatcher> Pointee(
|
|
const InnerMatcher& inner_matcher) {
|
|
return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
|
|
}
|
|
|
|
// Creates a matcher that matches an object whose given field matches
|
|
// 'matcher'. For example,
|
|
// Field(&Foo::number, Ge(5))
|
|
// matches a Foo object x iff x.number >= 5.
|
|
template <typename Class, typename FieldType, typename FieldMatcher>
|
|
inline PolymorphicMatcher<
|
|
internal::FieldMatcher<Class, FieldType> > Field(
|
|
FieldType Class::*field, const FieldMatcher& matcher) {
|
|
return MakePolymorphicMatcher(
|
|
internal::FieldMatcher<Class, FieldType>(
|
|
field, MatcherCast<const FieldType&>(matcher)));
|
|
// The call to MatcherCast() is required for supporting inner
|
|
// matchers of compatible types. For example, it allows
|
|
// Field(&Foo::bar, m)
|
|
// to compile where bar is an int32 and m is a matcher for int64.
|
|
}
|
|
|
|
// Creates a matcher that matches an object whose given property
|
|
// matches 'matcher'. For example,
|
|
// Property(&Foo::str, StartsWith("hi"))
|
|
// matches a Foo object x iff x.str() starts with "hi".
|
|
template <typename Class, typename PropertyType, typename PropertyMatcher>
|
|
inline PolymorphicMatcher<
|
|
internal::PropertyMatcher<Class, PropertyType> > Property(
|
|
PropertyType (Class::*property)() const, const PropertyMatcher& matcher) {
|
|
return MakePolymorphicMatcher(
|
|
internal::PropertyMatcher<Class, PropertyType>(
|
|
property,
|
|
MatcherCast<GMOCK_REFERENCE_TO_CONST_(PropertyType)>(matcher)));
|
|
// The call to MatcherCast() is required for supporting inner
|
|
// matchers of compatible types. For example, it allows
|
|
// Property(&Foo::bar, m)
|
|
// to compile where bar() returns an int32 and m is a matcher for int64.
|
|
}
|
|
|
|
// Creates a matcher that matches an object iff the result of applying
|
|
// a callable to x matches 'matcher'.
|
|
// For example,
|
|
// ResultOf(f, StartsWith("hi"))
|
|
// matches a Foo object x iff f(x) starts with "hi".
|
|
// callable parameter can be a function, function pointer, or a functor.
|
|
// Callable has to satisfy the following conditions:
|
|
// * It is required to keep no state affecting the results of
|
|
// the calls on it and make no assumptions about how many calls
|
|
// will be made. Any state it keeps must be protected from the
|
|
// concurrent access.
|
|
// * If it is a function object, it has to define type result_type.
|
|
// We recommend deriving your functor classes from std::unary_function.
|
|
template <typename Callable, typename ResultOfMatcher>
|
|
internal::ResultOfMatcher<Callable> ResultOf(
|
|
Callable callable, const ResultOfMatcher& matcher) {
|
|
return internal::ResultOfMatcher<Callable>(
|
|
callable,
|
|
MatcherCast<typename internal::CallableTraits<Callable>::ResultType>(
|
|
matcher));
|
|
// The call to MatcherCast() is required for supporting inner
|
|
// matchers of compatible types. For example, it allows
|
|
// ResultOf(Function, m)
|
|
// to compile where Function() returns an int32 and m is a matcher for int64.
|
|
}
|
|
|
|
// String matchers.
|
|
|
|
// Matches a string equal to str.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
|
|
StrEq(const internal::string& str) {
|
|
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
|
|
str, true, true));
|
|
}
|
|
|
|
// Matches a string not equal to str.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
|
|
StrNe(const internal::string& str) {
|
|
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
|
|
str, false, true));
|
|
}
|
|
|
|
// Matches a string equal to str, ignoring case.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
|
|
StrCaseEq(const internal::string& str) {
|
|
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
|
|
str, true, false));
|
|
}
|
|
|
|
// Matches a string not equal to str, ignoring case.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
|
|
StrCaseNe(const internal::string& str) {
|
|
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
|
|
str, false, false));
|
|
}
|
|
|
|
// Creates a matcher that matches any string, std::string, or C string
|
|
// that contains the given substring.
|
|
inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> >
|
|
HasSubstr(const internal::string& substring) {
|
|
return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>(
|
|
substring));
|
|
}
|
|
|
|
// Matches a string that starts with 'prefix' (case-sensitive).
|
|
inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> >
|
|
StartsWith(const internal::string& prefix) {
|
|
return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>(
|
|
prefix));
|
|
}
|
|
|
|
// Matches a string that ends with 'suffix' (case-sensitive).
|
|
inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> >
|
|
EndsWith(const internal::string& suffix) {
|
|
return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>(
|
|
suffix));
|
|
}
|
|
|
|
#ifdef GMOCK_HAS_REGEX
|
|
|
|
// Matches a string that fully matches regular expression 'regex'.
|
|
// The matcher takes ownership of 'regex'.
|
|
inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
|
|
const internal::RE* regex) {
|
|
return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true));
|
|
}
|
|
inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
|
|
const internal::string& regex) {
|
|
return MatchesRegex(new internal::RE(regex));
|
|
}
|
|
|
|
// Matches a string that contains regular expression 'regex'.
|
|
// The matcher takes ownership of 'regex'.
|
|
inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
|
|
const internal::RE* regex) {
|
|
return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false));
|
|
}
|
|
inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
|
|
const internal::string& regex) {
|
|
return ContainsRegex(new internal::RE(regex));
|
|
}
|
|
|
|
#endif // GMOCK_HAS_REGEX
|
|
|
|
#if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
|
|
// Wide string matchers.
|
|
|
|
// Matches a string equal to str.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
|
|
StrEq(const internal::wstring& str) {
|
|
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
|
|
str, true, true));
|
|
}
|
|
|
|
// Matches a string not equal to str.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
|
|
StrNe(const internal::wstring& str) {
|
|
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
|
|
str, false, true));
|
|
}
|
|
|
|
// Matches a string equal to str, ignoring case.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
|
|
StrCaseEq(const internal::wstring& str) {
|
|
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
|
|
str, true, false));
|
|
}
|
|
|
|
// Matches a string not equal to str, ignoring case.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
|
|
StrCaseNe(const internal::wstring& str) {
|
|
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
|
|
str, false, false));
|
|
}
|
|
|
|
// Creates a matcher that matches any wstring, std::wstring, or C wide string
|
|
// that contains the given substring.
|
|
inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> >
|
|
HasSubstr(const internal::wstring& substring) {
|
|
return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>(
|
|
substring));
|
|
}
|
|
|
|
// Matches a string that starts with 'prefix' (case-sensitive).
|
|
inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> >
|
|
StartsWith(const internal::wstring& prefix) {
|
|
return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>(
|
|
prefix));
|
|
}
|
|
|
|
// Matches a string that ends with 'suffix' (case-sensitive).
|
|
inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> >
|
|
EndsWith(const internal::wstring& suffix) {
|
|
return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>(
|
|
suffix));
|
|
}
|
|
|
|
#endif // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the
|
|
// first field == the second field.
|
|
inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the
|
|
// first field >= the second field.
|
|
inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the
|
|
// first field > the second field.
|
|
inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the
|
|
// first field <= the second field.
|
|
inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the
|
|
// first field < the second field.
|
|
inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the
|
|
// first field != the second field.
|
|
inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
|
|
|
|
// Creates a matcher that matches any value of type T that m doesn't
|
|
// match.
|
|
template <typename InnerMatcher>
|
|
inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
|
|
return internal::NotMatcher<InnerMatcher>(m);
|
|
}
|
|
|
|
// Creates a matcher that matches any value that matches all of the
|
|
// given matchers.
|
|
//
|
|
// For now we only support up to 5 matchers. Support for more
|
|
// matchers can be added as needed, or the user can use nested
|
|
// AllOf()s.
|
|
template <typename Matcher1, typename Matcher2>
|
|
inline internal::BothOfMatcher<Matcher1, Matcher2>
|
|
AllOf(Matcher1 m1, Matcher2 m2) {
|
|
return internal::BothOfMatcher<Matcher1, Matcher2>(m1, m2);
|
|
}
|
|
|
|
template <typename Matcher1, typename Matcher2, typename Matcher3>
|
|
inline internal::BothOfMatcher<Matcher1,
|
|
internal::BothOfMatcher<Matcher2, Matcher3> >
|
|
AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) {
|
|
return AllOf(m1, AllOf(m2, m3));
|
|
}
|
|
|
|
template <typename Matcher1, typename Matcher2, typename Matcher3,
|
|
typename Matcher4>
|
|
inline internal::BothOfMatcher<Matcher1,
|
|
internal::BothOfMatcher<Matcher2,
|
|
internal::BothOfMatcher<Matcher3, Matcher4> > >
|
|
AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) {
|
|
return AllOf(m1, AllOf(m2, m3, m4));
|
|
}
|
|
|
|
template <typename Matcher1, typename Matcher2, typename Matcher3,
|
|
typename Matcher4, typename Matcher5>
|
|
inline internal::BothOfMatcher<Matcher1,
|
|
internal::BothOfMatcher<Matcher2,
|
|
internal::BothOfMatcher<Matcher3,
|
|
internal::BothOfMatcher<Matcher4, Matcher5> > > >
|
|
AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) {
|
|
return AllOf(m1, AllOf(m2, m3, m4, m5));
|
|
}
|
|
|
|
// Creates a matcher that matches any value that matches at least one
|
|
// of the given matchers.
|
|
//
|
|
// For now we only support up to 5 matchers. Support for more
|
|
// matchers can be added as needed, or the user can use nested
|
|
// AnyOf()s.
|
|
template <typename Matcher1, typename Matcher2>
|
|
inline internal::EitherOfMatcher<Matcher1, Matcher2>
|
|
AnyOf(Matcher1 m1, Matcher2 m2) {
|
|
return internal::EitherOfMatcher<Matcher1, Matcher2>(m1, m2);
|
|
}
|
|
|
|
template <typename Matcher1, typename Matcher2, typename Matcher3>
|
|
inline internal::EitherOfMatcher<Matcher1,
|
|
internal::EitherOfMatcher<Matcher2, Matcher3> >
|
|
AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) {
|
|
return AnyOf(m1, AnyOf(m2, m3));
|
|
}
|
|
|
|
template <typename Matcher1, typename Matcher2, typename Matcher3,
|
|
typename Matcher4>
|
|
inline internal::EitherOfMatcher<Matcher1,
|
|
internal::EitherOfMatcher<Matcher2,
|
|
internal::EitherOfMatcher<Matcher3, Matcher4> > >
|
|
AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) {
|
|
return AnyOf(m1, AnyOf(m2, m3, m4));
|
|
}
|
|
|
|
template <typename Matcher1, typename Matcher2, typename Matcher3,
|
|
typename Matcher4, typename Matcher5>
|
|
inline internal::EitherOfMatcher<Matcher1,
|
|
internal::EitherOfMatcher<Matcher2,
|
|
internal::EitherOfMatcher<Matcher3,
|
|
internal::EitherOfMatcher<Matcher4, Matcher5> > > >
|
|
AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) {
|
|
return AnyOf(m1, AnyOf(m2, m3, m4, m5));
|
|
}
|
|
|
|
// Returns a matcher that matches anything that satisfies the given
|
|
// predicate. The predicate can be any unary function or functor
|
|
// whose return type can be implicitly converted to bool.
|
|
template <typename Predicate>
|
|
inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
|
|
Truly(Predicate pred) {
|
|
return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
|
|
}
|
|
|
|
// Returns a matcher that matches an equal container.
|
|
// This matcher behaves like Eq(), but in the event of mismatch lists the
|
|
// values that are included in one container but not the other. (Duplicate
|
|
// values and order differences are not explained.)
|
|
template <typename Container>
|
|
inline PolymorphicMatcher<internal::ContainerEqMatcher<Container> >
|
|
ContainerEq(const Container& rhs) {
|
|
return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
|
|
}
|
|
|
|
// Returns a predicate that is satisfied by anything that matches the
|
|
// given matcher.
|
|
template <typename M>
|
|
inline internal::MatcherAsPredicate<M> Matches(M matcher) {
|
|
return internal::MatcherAsPredicate<M>(matcher);
|
|
}
|
|
|
|
// These macros allow using matchers to check values in Google Test
|
|
// tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
|
|
// succeed iff the value matches the matcher. If the assertion fails,
|
|
// the value and the description of the matcher will be printed.
|
|
#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
|
|
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
|
|
#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
|
|
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
|
|
|
|
} // namespace testing
|
|
|
|
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
|