|`A<type>()` or `An<type>()`|`argument` can be any value of type `type`. |
## Generic Comparison ##
|`Eq(value)` or `value`|`argument == value`|
|:---------------------|:------------------|
|`Ge(value)` |`argument >= value`|
|`Gt(value)` |`argument > value` |
|`Le(value)` |`argument <= value`|
|`Lt(value)` |`argument <value`|
|`Ne(value)` |`argument != value`|
|`IsNull()` |`argument` is a `NULL` pointer (raw or smart).|
|`NotNull()` |`argument` is a non-null pointer (raw or smart).|
|`Ref(variable)` |`argument` is a reference to `variable`.|
|`TypedEq<type>(value)`|`argument` has type `type` and is equal to `value`. You may need to use this instead of `Eq(value)` when the mock function is overloaded.|
Except `Ref()`, these matchers make a _copy_ of `value` in case it's
modified or destructed later. If the compiler complains that `value`
doesn't have a public copy constructor, try wrap it in `ByRef()`,
e.g. `Eq(ByRef(non_copyable_value))`. If you do that, make sure
`non_copyable_value` is not changed afterwards, or the meaning of your
matcher will be changed.
## Floating-Point Matchers ##
|`DoubleEq(a_double)`|`argument` is a `double` value approximately equal to `a_double`, treating two NaNs as unequal.|
automatically pick a reasonable error bound based on the absolute
value of the expected value. `DoubleEq()` and `FloatEq()` conform to
the IEEE standard, which requires comparing two NaNs for equality to
return false. The `NanSensitive*` version instead treats two NaNs as
equal, which is often what a user wants.
|`DoubleNear(a_double, max_abs_error)`|`argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as unequal.|
|`FloatNear(a_float, max_abs_error)` |`argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as unequal. |
|`NanSensitiveDoubleNear(a_double, max_abs_error)`|`argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
|`NanSensitiveFloatNear(a_float, max_abs_error)`|`argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
## String Matchers ##
The `argument` can be either a C string or a C++ string object:
|`ContainsRegex(string)`|`argument` matches the given regular expression.|
|`EndsWith(suffix)` |`argument` ends with string `suffix`. |
|`HasSubstr(string)` |`argument` contains `string` as a sub-string. |
|`MatchesRegex(string)` |`argument` matches the given regular expression with the match starting at the first character and ending at the last character.|
|`StartsWith(prefix)` |`argument` starts with string `prefix`. |
|`StrCaseEq(string)` |`argument` is equal to `string`, ignoring case. |
|`StrCaseNe(string)` |`argument` is not equal to `string`, ignoring case.|
|`StrEq(string)` |`argument` is equal to `string`. |
|`StrNe(string)` |`argument` is not equal to `string`. |
`ContainsRegex()` and `MatchesRegex()` use the regular expression
`StrCaseEq()`, `StrCaseNe()`, `StrEq()`, and `StrNe()` work for wide
strings as well.
## Container Matchers ##
Most STL-style containers support `==`, so you can use
`Eq(expected_container)` or simply `expected_container` to match a
container exactly. If you want to write the elements in-line,
match them more flexibly, or get more informative messages, you can use:
| `ContainerEq(container)` | The same as `Eq(container)` except that the failure message also includes which elements are in one container but not the other. |
| `Contains(e)` | `argument` contains an element that matches `e`, which can be either a value or a matcher. |
| `Each(e)` | `argument` is a container where _every_ element matches `e`, which can be either a value or a matcher. |
| `ElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, where the i-th element matches `ei`, which can be a value or a matcher. 0 to 10 arguments are allowed. |
| `ElementsAreArray({ e0, e1, ..., en })`, `ElementsAreArray(array)`, or `ElementsAreArray(array, count)` | The same as `ElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, or C-style array. |
| `IsEmpty()` | `argument` is an empty container (`container.empty()`). |
| `Pointwise(m, container)` | `argument` contains the same number of elements as in `container`, and for all i, (the i-th element in `argument`, the i-th element in `container`) match `m`, which is a matcher on 2-tuples. E.g. `Pointwise(Le(), upper_bounds)` verifies that each element in `argument` doesn't exceed the corresponding element in `upper_bounds`. See more detail below. |
| `SizeIs(m)` | `argument` is a container whose size matches `m`. E.g. `SizeIs(2)` or `SizeIs(Lt(2))`. |
| `UnorderedElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, and under some permutation each element matches an `ei` (for a different `i`), which can be a value or a matcher. 0 to 10 arguments are allowed. |
| `UnorderedElementsAreArray({ e0, e1, ..., en })`, `UnorderedElementsAreArray(array)`, or `UnorderedElementsAreArray(array, count)` | The same as `UnorderedElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, or C-style array. |
| `WhenSorted(m)` | When `argument` is sorted using the `<` operator, it matches container matcher `m`. E.g. `WhenSorted(UnorderedElementsAre(1, 2, 3))` verifies that `argument` contains elements `1`, `2`, and `3`, ignoring order. |
| `WhenSortedBy(comparator, m)` | The same as `WhenSorted(m)`, except that the given comparator instead of `<` is used to sort `argument`. E.g. `WhenSortedBy(std::greater<int>(), ElementsAre(3, 2, 1))`. |
Notes:
* These matchers can also match:
1. a native array passed by reference (e.g. in `Foo(const int (&a)[5])`), and
1. an array passed as a pointer and a count (e.g. in `Bar(const T* buffer, int len)` -- see [Multi-argument Matchers](#Multiargument_Matchers.md)).
* The array being matched may be multi-dimensional (i.e. its elements can be arrays).
*`m` in `Pointwise(m, ...)` should be a matcher for `::testing::tuple<T, U>` where `T` and `U` are the element type of the actual container and the expected container, respectively. For example, to compare two `Foo` containers where `Foo` doesn't support `operator==` but has an `Equals()` method, one might write:
|`Field(&class::field, m)`|`argument.field` (or `argument->field` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_.|
|`Key(e)` |`argument.first` matches `e`, which can be either a value or a matcher. E.g. `Contains(Key(Le(5)))` can verify that a `map` contains a key `<= 5`.|
|`Pair(m1, m2)` |`argument` is an `std::pair` whose `first` field matches `m1` and `second` field matches `m2`. |
|`Property(&class::property, m)`|`argument.property()` (or `argument->property()` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_.|
## Matching the Result of a Function or Functor ##
|`ResultOf(f, m)`|`f(argument)` matches matcher `m`, where `f` is a function or functor.|
| `MATCHER_P(IsDivisibleBy, n, "") { *result_listener << "where the remainder is " << (arg % n); return (arg % n) == 0; }` | Defines a macher `IsDivisibleBy(n)` to match a number divisible by `n`. |
| `MATCHER_P2(IsBetween, a, b, std::string(negation ? "isn't" : "is") + " between " + PrintToString(a) + " and " + PrintToString(b)) { return a <= arg && arg <= b; }` | Defines a matcher `IsBetween(a, b)` to match a value in the range [`a`, `b`]. |
**Notes:**
1. The `MATCHER*` macros cannot be used inside a function or class.
1. The matcher body must be _purely functional_ (i.e. it cannot have any side effect, and the result must not depend on anything other than the value being matched and the matcher parameters).
1. You can use `PrintToString(x)` to convert a value `x` of any type to a string.
|`ASSERT_THAT(expression, m)`|Generates a [fatal failure](../../googletest/docs/Primer.md#assertions) if the value of `expression` doesn't match matcher `m`.|
|`EXPECT_THAT(expression, m)`|Generates a non-fatal failure if the value of `expression` doesn't match matcher `m`. |
# Actions #
**Actions** specify what a mock function should do when invoked.
## Returning a Value ##
|`Return()`|Return from a `void` mock function.|
|:---------|:----------------------------------|
|`Return(value)`|Return `value`. If the type of `value` is different to the mock function's return type, `value` is converted to the latter type <i>at the time the expectation is set</i>, not when the action is executed.|
|`ReturnArg<N>()`|Return the `N`-th (0-based) argument.|
|`ReturnNew<T>(a1, ..., ak)`|Return `new T(a1, ..., ak)`; a different object is created each time.|
|`ReturnNull()`|Return a null pointer. |
|`ReturnPointee(ptr)`|Return the value pointed to by `ptr`.|
|`ReturnRef(variable)`|Return a reference to `variable`. |
|`ReturnRefOfCopy(value)`|Return a reference to a copy of `value`; the copy lives as long as the action.|
## Side Effects ##
|`Assign(&variable, value)`|Assign `value` to variable.|
| `DeleteArg<N>()` | Delete the `N`-th (0-based) argument, which must be a pointer. |
| `SaveArg<N>(pointer)` | Save the `N`-th (0-based) argument to `*pointer`. |
| `SaveArgPointee<N>(pointer)` | Save the value pointed to by the `N`-th (0-based) argument to `*pointer`. |
| `SetArgReferee<N>(value)` | Assign value to the variable referenced by the `N`-th (0-based) argument. |
|`SetArgPointee<N>(value)` |Assign `value` to the variable pointed by the `N`-th (0-based) argument.|
|`SetArgumentPointee<N>(value)`|Same as `SetArgPointee<N>(value)`. Deprecated. Will be removed in v1.7.0.|
|`SetArrayArgument<N>(first, last)`|Copies the elements in source range [`first`, `last`) to the array pointed to by the `N`-th (0-based) argument, which can be either a pointer or an iterator. The action does not take ownership of the elements in the source range.|
|`SetErrnoAndReturn(error, value)`|Set `errno` to `error` and return `value`.|
|`Throw(exception)` |Throws the given exception, which can be any copyable value. Available since v1.1.0.|
## Using a Function or a Functor as an Action ##
|`Invoke(f)`|Invoke `f` with the arguments passed to the mock function, where `f` can be a global/static function or a functor.|
|`Invoke(object_pointer, &class::method)`|Invoke the {method on the object with the arguments passed to the mock function. |
|`InvokeWithoutArgs(f)`|Invoke `f`, which can be a global/static function or a functor. `f` must take no arguments. |
|`InvokeWithoutArgs(object_pointer, &class::method)`|Invoke the method on the object, which takes no arguments. |
|`InvokeArgument<N>(arg1, arg2, ..., argk)`|Invoke the mock function's `N`-th (0-based) argument, which must be a function or a functor, with the `k` arguments.|
The return value of the invoked function is used as the return value
of the action.
When defining a function or functor to be used with `Invoke*()`, you can declare any unused parameters as `Unused`:
**Note:** due to technical reasons, `DoDefault()` cannot be used inside a composite action - trying to do so will result in a run-time error.
## Composite Actions ##
|`DoAll(a1, a2, ..., an)`|Do all actions `a1` to `an` and return the result of `an` in each invocation. The first `n - 1` sub-actions must return void. |