2015-08-24 18:41:02 -04:00
# Defining a Mock Class #
## Mocking a Normal Class ##
Given
2018-09-03 21:56:23 +03:00
```cpp
2015-08-24 18:41:02 -04:00
class Foo {
...
virtual ~Foo();
virtual int GetSize() const = 0;
virtual string Describe(const char* name) = 0;
virtual string Describe(int type) = 0;
virtual bool Process(Bar elem, int count) = 0;
};
```
(note that `~Foo()` **must** be virtual) we can define its mock as
2018-09-03 21:56:23 +03:00
```cpp
2015-08-24 18:41:02 -04:00
#include "gmock/gmock.h"
class MockFoo : public Foo {
MOCK_CONST_METHOD0(GetSize, int());
MOCK_METHOD1(Describe, string(const char* name));
MOCK_METHOD1(Describe, string(int type));
MOCK_METHOD2(Process, bool(Bar elem, int count));
};
```
To create a "nice" mock object which ignores all uninteresting calls,
or a "strict" mock object, which treats them as failures:
2018-09-03 21:56:23 +03:00
```cpp
2015-08-24 18:41:02 -04:00
NiceMock< MockFoo > nice_foo; // The type is a subclass of MockFoo.
StrictMock< MockFoo > strict_foo; // The type is a subclass of MockFoo.
```
## Mocking a Class Template ##
To mock
2018-09-03 21:56:23 +03:00
```cpp
2015-08-24 18:41:02 -04:00
template < typename Elem >
class StackInterface {
public:
...
virtual ~StackInterface();
virtual int GetSize() const = 0;
virtual void Push(const Elem& x) = 0;
};
```
(note that `~StackInterface()` **must** be virtual) just append `_T` to the `MOCK_*` macros:
2018-09-03 21:56:23 +03:00
```cpp
2015-08-24 18:41:02 -04:00
template < typename Elem >
class MockStack : public StackInterface< Elem > {
public:
...
MOCK_CONST_METHOD0_T(GetSize, int());
MOCK_METHOD1_T(Push, void(const Elem& x));
};
```
## Specifying Calling Conventions for Mock Functions ##
If your mock function doesn't use the default calling convention, you
can specify it by appending `_WITH_CALLTYPE` to any of the macros
described in the previous two sections and supplying the calling
convention as the first argument to the macro. For example,
2018-09-03 21:56:23 +03:00
```cpp
2017-10-14 18:33:19 +02:00
MOCK_METHOD1_WITH_CALLTYPE(STDMETHODCALLTYPE, Foo, bool(int n));
2015-08-24 18:41:02 -04:00
MOCK_CONST_METHOD2_WITH_CALLTYPE(STDMETHODCALLTYPE, Bar, int(double x, double y));
```
where `STDMETHODCALLTYPE` is defined by `<objbase.h>` on Windows.
# Using Mocks in Tests #
The typical flow is:
1. Import the Google Mock names you need to use. All Google Mock names are in the `testing` namespace unless they are macros or otherwise noted.
1. Create the mock objects .
1. Optionally, set the default actions of the mock objects.
1. Set your expectations on the mock objects (How will they be called? What wil they do?).
2015-12-08 13:36:05 +01:00
1. Exercise code that uses the mock objects; if necessary, check the result using [Google Test ](../../googletest/ ) assertions.
2015-08-24 18:41:02 -04:00
1. When a mock objects is destructed, Google Mock automatically verifies that all expectations on it have been satisfied.
Here is an example:
2018-09-03 21:56:23 +03:00
```cpp
using ::testing::Return; // #1
2015-08-24 18:41:02 -04:00
TEST(BarTest, DoesThis) {
MockFoo foo; // #2
ON_CALL(foo, GetSize()) // #3
.WillByDefault(Return(1));
// ... other default actions ...
EXPECT_CALL(foo, Describe(5)) // #4
.Times(3)
.WillRepeatedly(Return("Category 5"));
// ... other expectations ...
EXPECT_EQ("good", MyProductionFunction(&foo)); // #5
} // #6
```
# Setting Default Actions #
Google Mock has a **built-in default action** for any function that
returns `void` , `bool` , a numeric value, or a pointer.
To customize the default action for functions with return type `T` globally:
2018-09-03 21:56:23 +03:00
```cpp
2015-08-24 18:41:02 -04:00
using ::testing::DefaultValue;
// Sets the default value to be returned. T must be CopyConstructible.
DefaultValue< T > ::Set(value);
// Sets a factory. Will be invoked on demand. T must be MoveConstructible.
// T MakeT();
DefaultValue< T > ::SetFactory(&MakeT);
// ... use the mocks ...
// Resets the default value.
DefaultValue< T > ::Clear();
```
To customize the default action for a particular method, use `ON_CALL()` :
2018-09-03 21:56:23 +03:00
```cpp
2015-08-24 18:41:02 -04:00
ON_CALL(mock_object, method(matchers))
.With(multi_argument_matcher) ?
.WillByDefault(action);
```
# Setting Expectations #
`EXPECT_CALL()` sets **expectations** on a mock method (How will it be
called? What will it do?):
2018-09-03 21:56:23 +03:00
```cpp
2015-08-24 18:41:02 -04:00
EXPECT_CALL(mock_object, method(matchers))
.With(multi_argument_matcher) ?
.Times(cardinality) ?
.InSequence(sequences) *
.After(expectations) *
.WillOnce(action) *
.WillRepeatedly(action) ?
.RetiresOnSaturation(); ?
```
If `Times()` is omitted, the cardinality is assumed to be:
* `Times(1)` when there is neither `WillOnce()` nor `WillRepeatedly()` ;
* `Times(n)` when there are `n WillOnce()` s but no `WillRepeatedly()` , where `n` >= 1; or
* `Times(AtLeast(n))` when there are `n WillOnce()` s and a `WillRepeatedly()` , where `n` >= 0.
A method with no `EXPECT_CALL()` is free to be invoked _any number of times_ , and the default action will be taken each time.
# Matchers #
A **matcher** matches a _single_ argument. You can use it inside
`ON_CALL()` or `EXPECT_CALL()` , or use it to validate a value
directly:
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:--------|:------------|
2015-08-24 18:41:02 -04:00
| `EXPECT_THAT(value, matcher)` | Asserts that `value` matches `matcher` . |
| `ASSERT_THAT(value, matcher)` | The same as `EXPECT_THAT(value, matcher)` , except that it generates a **fatal** failure. |
Built-in matchers (where `argument` is the function argument) are
divided into several categories:
## Wildcard ##
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:--------|:------------|
2015-08-24 18:41:02 -04:00
|`_` |`argument` can be any value of the correct type.|
|`A<type>()` or `An<type>()` |`argument` can be any value of type `type` . |
## Generic Comparison ##
2018-09-03 21:56:23 +03:00
| Matcher | Description |
2015-08-24 18:41:02 -04:00
|:---------------------|:------------------|
2018-09-03 21:56:23 +03:00
|`Eq(value)` or `value` |`argument == value` |
2015-08-24 18:41:02 -04:00
|`Ge(value)` |`argument >= value` |
|`Gt(value)` |`argument > value` |
|`Le(value)` |`argument <= value` |
|`Lt(value)` |`argument < value` |
|`Ne(value)` |`argument != value` |
|`IsNull()` |`argument` is a `NULL` pointer (raw or smart).|
|`NotNull()` |`argument` is a non-null pointer (raw or smart).|
2018-10-29 17:18:07 -04:00
|`Optional(m)` |`argument` is `optional<>` that contains a value matching `m` .|
2018-09-03 21:56:23 +03:00
|`VariantWith<T>(m)` |`argument` is `variant<>` that holds the alternative of type T with a value matching `m` .|
2015-08-24 18:41:02 -04:00
|`Ref(variable)` |`argument` is a reference to `variable` .|
|`TypedEq<type>(value)` |`argument` has type `type` and is equal to `value` . You may need to use this instead of `Eq(value)` when the mock function is overloaded.|
Except `Ref()` , these matchers make a _copy_ of `value` in case it's
modified or destructed later. If the compiler complains that `value`
doesn't have a public copy constructor, try wrap it in `ByRef()` ,
e.g. `Eq(ByRef(non_copyable_value))` . If you do that, make sure
`non_copyable_value` is not changed afterwards, or the meaning of your
matcher will be changed.
## Floating-Point Matchers ##
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:-------------------|:---------------------------------------------------------------------------------------------------------|
|`DoubleEq(a_double)` |`argument` is a `double` value approximately equal to `a_double` , treating two NaNs as unequal. |
|`FloatEq(a_float)` |`argument` is a `float` value approximately equal to `a_float` , treating two NaNs as unequal. |
|`NanSensitiveDoubleEq(a_double)` |`argument` is a `double` value approximately equal to `a_double` , treating two NaNs as equal. |
|`NanSensitiveFloatEq(a_float)` |`argument` is a `float` value approximately equal to `a_float` , treating two NaNs as equal. |
2015-08-24 18:41:02 -04:00
The above matchers use ULP-based comparison (the same as used in
2015-12-08 13:36:05 +01:00
[Google Test ](../../googletest/ )). They
2015-08-24 18:41:02 -04:00
automatically pick a reasonable error bound based on the absolute
value of the expected value. `DoubleEq()` and `FloatEq()` conform to
the IEEE standard, which requires comparing two NaNs for equality to
return false. The `NanSensitive*` version instead treats two NaNs as
equal, which is often what a user wants.
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:--------|:------------|
2015-08-24 18:41:02 -04:00
|`DoubleNear(a_double, max_abs_error)` |`argument` is a `double` value close to `a_double` (absolute error < = `max_abs_error` ), treating two NaNs as unequal.|
2018-09-03 21:56:23 +03:00
|`FloatNear(a_float, max_abs_error)` |`argument` is a `float` value close to `a_float` (absolute error < = `max_abs_error` ), treating two NaNs as unequal.|
|`NanSensitiveDoubleNear(a_double, max_abs_error)` |`argument` is a `double` value close to `a_double` (absolute error < = `max_abs_error` ), treating two NaNs as equal.|
|`NanSensitiveFloatNear(a_float, max_abs_error)` |`argument` is a `float` value close to `a_float` (absolute error < = `max_abs_error` ), treating two NaNs as equal.|
2015-08-24 18:41:02 -04:00
## String Matchers ##
The `argument` can be either a C string or a C++ string object:
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:----------------------|:--------------------------------------------------|
|`ContainsRegex(string)` |`argument` matches the given regular expression. |
|`EndsWith(suffix)` |`argument` ends with string `suffix` . |
|`HasSubstr(string)` |`argument` contains `string` as a sub-string. |
2015-08-24 18:41:02 -04:00
|`MatchesRegex(string)` |`argument` matches the given regular expression with the match starting at the first character and ending at the last character.|
2018-09-03 21:56:23 +03:00
|`StartsWith(prefix)` |`argument` starts with string `prefix` . |
|`StrCaseEq(string)` |`argument` is equal to `string` , ignoring case. |
2015-08-24 18:41:02 -04:00
|`StrCaseNe(string)` |`argument` is not equal to `string` , ignoring case.|
2018-09-03 21:56:23 +03:00
|`StrEq(string)` |`argument` is equal to `string` . |
|`StrNe(string)` |`argument` is not equal to `string` . |
2015-08-24 18:41:02 -04:00
`ContainsRegex()` and `MatchesRegex()` use the regular expression
syntax defined
2018-06-11 11:40:35 -04:00
[here ](../../googletest/docs/advanced.md#regular-expression-syntax ).
2015-08-24 18:41:02 -04:00
`StrCaseEq()` , `StrCaseNe()` , `StrEq()` , and `StrNe()` work for wide
strings as well.
## Container Matchers ##
Most STL-style containers support `==` , so you can use
`Eq(expected_container)` or simply `expected_container` to match a
container exactly. If you want to write the elements in-line,
match them more flexibly, or get more informative messages, you can use:
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:--------|:------------|
2015-08-24 18:41:02 -04:00
| `ContainerEq(container)` | The same as `Eq(container)` except that the failure message also includes which elements are in one container but not the other. |
2018-09-03 21:56:23 +03:00
| `Contains(e)` | `argument` contains an element that matches `e` , which can be either a value or a matcher. |
| `Each(e)` | `argument` is a container where _every_ element matches `e` , which can be either a value or a matcher. |
2015-08-24 18:41:02 -04:00
| `ElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, where the i-th element matches `ei` , which can be a value or a matcher. 0 to 10 arguments are allowed. |
| `ElementsAreArray({ e0, e1, ..., en })` , `ElementsAreArray(array)` , or `ElementsAreArray(array, count)` | The same as `ElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, or C-style array. |
2018-09-03 21:56:23 +03:00
| `IsEmpty()` | `argument` is an empty container (`container.empty()` ). |
2015-08-24 18:41:02 -04:00
| `Pointwise(m, container)` | `argument` contains the same number of elements as in `container` , and for all i, (the i-th element in `argument` , the i-th element in `container` ) match `m` , which is a matcher on 2-tuples. E.g. `Pointwise(Le(), upper_bounds)` verifies that each element in `argument` doesn't exceed the corresponding element in `upper_bounds` . See more detail below. |
2018-09-03 21:56:23 +03:00
| `SizeIs(m)` | `argument` is a container whose size matches `m` . E.g. `SizeIs(2)` or `SizeIs(Lt(2))` . |
2015-08-24 18:41:02 -04:00
| `UnorderedElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, and under some permutation each element matches an `ei` (for a different `i` ), which can be a value or a matcher. 0 to 10 arguments are allowed. |
| `UnorderedElementsAreArray({ e0, e1, ..., en })` , `UnorderedElementsAreArray(array)` , or `UnorderedElementsAreArray(array, count)` | The same as `UnorderedElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, or C-style array. |
2018-09-03 21:56:23 +03:00
| `WhenSorted(m)` | When `argument` is sorted using the `<` operator, it matches container matcher `m` . E.g. `WhenSorted(ElementsAre(1, 2, 3))` verifies that `argument` contains elements `1` , `2` , and `3` , ignoring order. |
2015-08-24 18:41:02 -04:00
| `WhenSortedBy(comparator, m)` | The same as `WhenSorted(m)` , except that the given comparator instead of `<` is used to sort `argument` . E.g. `WhenSortedBy(std::greater<int>(), ElementsAre(3, 2, 1))` . |
Notes:
* These matchers can also match:
1. a native array passed by reference (e.g. in `Foo(const int (&a)[5])` ), and
2018-09-04 23:07:18 +03:00
1. an array passed as a pointer and a count (e.g. in `Bar(const T* buffer, int len)` -- see [Multi-argument Matchers ](#multiargument-matchers )).
2015-08-24 18:41:02 -04:00
* The array being matched may be multi-dimensional (i.e. its elements can be arrays).
* `m` in `Pointwise(m, ...)` should be a matcher for `::testing::tuple<T, U>` where `T` and `U` are the element type of the actual container and the expected container, respectively. For example, to compare two `Foo` containers where `Foo` doesn't support `operator==` but has an `Equals()` method, one might write:
2018-09-03 21:56:23 +03:00
```cpp
2015-08-24 18:41:02 -04:00
using ::testing::get;
MATCHER(FooEq, "") {
return get< 0 > (arg).Equals(get< 1 > (arg));
}
...
EXPECT_THAT(actual_foos, Pointwise(FooEq(), expected_foos));
```
## Member Matchers ##
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:--------|:------------|
2015-08-24 18:41:02 -04:00
|`Field(&class::field, m)` |`argument.field` (or `argument->field` when `argument` is a plain pointer) matches matcher `m` , where `argument` is an object of type _class_ .|
2018-09-03 21:56:23 +03:00
|`Key(e)` |`argument.first` matches `e` , which can be either a value or a matcher. E.g. `Contains(Key(Le(5)))` can verify that a `map` contains a key `<= 5` .|
|`Pair(m1, m2)` |`argument` is an `std::pair` whose `first` field matches `m1` and `second` field matches `m2` .|
2015-08-24 18:41:02 -04:00
|`Property(&class::property, m)` |`argument.property()` (or `argument->property()` when `argument` is a plain pointer) matches matcher `m` , where `argument` is an object of type _class_ .|
## Matching the Result of a Function or Functor ##
2018-09-03 21:56:23 +03:00
| Matcher | Description |
2015-08-24 18:41:02 -04:00
|:---------------|:---------------------------------------------------------------------|
2018-09-03 21:56:23 +03:00
|`ResultOf(f, m)` |`f(argument)` matches matcher `m` , where `f` is a function or functor.|
2015-08-24 18:41:02 -04:00
## Pointer Matchers ##
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:------------------------|:-----------------------------------------------------------------------------------------------|
|`Pointee(m)` |`argument` (either a smart pointer or a raw pointer) points to a value that matches matcher `m` .|
2015-08-24 18:41:02 -04:00
|`WhenDynamicCastTo<T>(m)` | when `argument` is passed through `dynamic_cast<T>()` , it matches matcher `m` . |
## Multiargument Matchers ##
Technically, all matchers match a _single_ value. A "multi-argument"
matcher is just one that matches a _tuple_ . The following matchers can
be used to match a tuple `(x, y)` :
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:--------|:------------|
2015-08-24 18:41:02 -04:00
|`Eq()` |`x == y` |
|`Ge()` |`x >= y` |
|`Gt()` |`x > y` |
|`Le()` |`x <= y` |
|`Lt()` |`x < y` |
|`Ne()` |`x != y` |
You can use the following selectors to pick a subset of the arguments
(or reorder them) to participate in the matching:
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:--------|:------------|
2015-08-24 18:41:02 -04:00
|`AllArgs(m)` |Equivalent to `m` . Useful as syntactic sugar in `.With(AllArgs(m))` .|
|`Args<N1, N2, ..., Nk>(m)` |The tuple of the `k` selected (using 0-based indices) arguments matches `m` , e.g. `Args<1, 2>(Eq())` .|
## Composite Matchers ##
You can make a matcher from one or more other matchers:
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:-----------------------|:------------------------------------------------------------|
|`AllOf(m1, m2, ..., mn)` |`argument` matches all of the matchers `m1` to `mn` . |
2015-08-24 18:41:02 -04:00
|`AnyOf(m1, m2, ..., mn)` |`argument` matches at least one of the matchers `m1` to `mn` .|
2018-09-03 21:56:23 +03:00
|`Not(m)` |`argument` doesn't match matcher `m` . |
2015-08-24 18:41:02 -04:00
## Adapters for Matchers ##
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:--------|:------------|
2015-08-24 18:41:02 -04:00
|`MatcherCast<T>(m)` |casts matcher `m` to type `Matcher<T>` .|
2018-09-03 21:56:23 +03:00
|`SafeMatcherCast<T>(m)` | [safely casts ](CookBook.md#casting-matchers ) matcher `m` to type `Matcher<T>` .|
|`Truly(predicate)` |`predicate(argument)` returns something considered by C++ to be true, where `predicate` is a function or functor.|
2015-08-24 18:41:02 -04:00
## Matchers as Predicates ##
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:--------|:------------|
2015-08-24 18:41:02 -04:00
|`Matches(m)(value)` |evaluates to `true` if `value` matches `m` . You can use `Matches(m)` alone as a unary functor.|
2018-09-03 21:56:23 +03:00
|`ExplainMatchResult(m, value, result_listener)` |evaluates to `true` if `value` matches `m` , explaining the result to `result_listener` .|
|`Value(value, m)` |evaluates to `true` if `value` matches `m` .|
2015-08-24 18:41:02 -04:00
## Defining Matchers ##
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:--------|:------------|
2015-08-24 18:41:02 -04:00
| `MATCHER(IsEven, "") { return (arg % 2) == 0; }` | Defines a matcher `IsEven()` to match an even number. |
| `MATCHER_P(IsDivisibleBy, n, "") { *result_listener << "where the remainder is " << (arg % n); return (arg % n) == 0; }` | Defines a macher `IsDivisibleBy(n)` to match a number divisible by `n` . |
| `MATCHER_P2(IsBetween, a, b, std::string(negation ? "isn't" : "is") + " between " + PrintToString(a) + " and " + PrintToString(b)) { return a <= arg && arg <= b; }` | Defines a matcher `IsBetween(a, b)` to match a value in the range [`a` , `b` ]. |
**Notes:**
1. The `MATCHER*` macros cannot be used inside a function or class.
1. The matcher body must be _purely functional_ (i.e. it cannot have any side effect, and the result must not depend on anything other than the value being matched and the matcher parameters).
1. You can use `PrintToString(x)` to convert a value `x` of any type to a string.
## Matchers as Test Assertions ##
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:--------|:------------|
2018-06-11 11:26:16 -04:00
|`ASSERT_THAT(expression, m)` |Generates a [fatal failure ](../../googletest/docs/primer.md#assertions ) if the value of `expression` doesn't match matcher `m` .|
2018-09-03 21:56:23 +03:00
|`EXPECT_THAT(expression, m)` |Generates a non-fatal failure if the value of `expression` doesn't match matcher `m` .|
2015-08-24 18:41:02 -04:00
# Actions #
**Actions** specify what a mock function should do when invoked.
## Returning a Value ##
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:--------|:------------|
2015-08-24 18:41:02 -04:00
|`Return()` |Return from a `void` mock function.|
|`Return(value)` |Return `value` . If the type of `value` is different to the mock function's return type, `value` is converted to the latter type < i > at the time the expectation is set</ i > , not when the action is executed.|
|`ReturnArg<N>()` |Return the `N` -th (0-based) argument.|
|`ReturnNew<T>(a1, ..., ak)` |Return `new T(a1, ..., ak)` ; a different object is created each time.|
2018-09-03 21:56:23 +03:00
|`ReturnNull()` |Return a null pointer.|
2015-08-24 18:41:02 -04:00
|`ReturnPointee(ptr)` |Return the value pointed to by `ptr` .|
2018-09-03 21:56:23 +03:00
|`ReturnRef(variable)` |Return a reference to `variable` .|
2015-08-24 18:41:02 -04:00
|`ReturnRefOfCopy(value)` |Return a reference to a copy of `value` ; the copy lives as long as the action.|
## Side Effects ##
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:--------|:------------|
2015-08-24 18:41:02 -04:00
|`Assign(&variable, value)` |Assign `value` to variable.|
2018-09-03 21:56:23 +03:00
|`DeleteArg<N>()` | Delete the `N` -th (0-based) argument, which must be a pointer.|
|`SaveArg<N>(pointer)` | Save the `N` -th (0-based) argument to `*pointer` .|
|`SaveArgPointee<N>(pointer)` | Save the value pointed to by the `N` -th (0-based) argument to `*pointer` .|
|`SetArgReferee<N>(value)` | Assign value to the variable referenced by the `N` -th (0-based) argument. |
2015-08-24 18:41:02 -04:00
|`SetArgPointee<N>(value)` |Assign `value` to the variable pointed by the `N` -th (0-based) argument.|
|`SetArgumentPointee<N>(value)` |Same as `SetArgPointee<N>(value)` . Deprecated. Will be removed in v1.7.0.|
|`SetArrayArgument<N>(first, last)` |Copies the elements in source range [`first` , `last` ) to the array pointed to by the `N` -th (0-based) argument, which can be either a pointer or an iterator. The action does not take ownership of the elements in the source range.|
|`SetErrnoAndReturn(error, value)` |Set `errno` to `error` and return `value` .|
2018-09-03 21:56:23 +03:00
|`Throw(exception)` |Throws the given exception, which can be any copyable value. Available since v1.1.0.|
2015-08-24 18:41:02 -04:00
## Using a Function or a Functor as an Action ##
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:--------|:------------|
2015-08-24 18:41:02 -04:00
|`Invoke(f)` |Invoke `f` with the arguments passed to the mock function, where `f` can be a global/static function or a functor.|
2018-09-03 21:56:23 +03:00
|`Invoke(object_pointer, &class::method)` |Invoke the {method on the object with the arguments passed to the mock function.|
|`InvokeWithoutArgs(f)` |Invoke `f` , which can be a global/static function or a functor. `f` must take no arguments.|
|`InvokeWithoutArgs(object_pointer, &class::method)` |Invoke the method on the object, which takes no arguments.|
2015-08-24 18:41:02 -04:00
|`InvokeArgument<N>(arg1, arg2, ..., argk)` |Invoke the mock function's `N` -th (0-based) argument, which must be a function or a functor, with the `k` arguments.|
The return value of the invoked function is used as the return value
of the action.
When defining a function or functor to be used with `Invoke*()` , you can declare any unused parameters as `Unused` :
2018-09-03 21:56:23 +03:00
```cpp
2015-08-24 18:41:02 -04:00
double Distance(Unused, double x, double y) { return sqrt(x*x + y*y); }
...
EXPECT_CALL(mock, Foo("Hi", _, _ )).WillOnce(Invoke(Distance));
```
In `InvokeArgument<N>(...)` , if an argument needs to be passed by reference, wrap it inside `ByRef()` . For example,
2018-09-03 21:56:23 +03:00
```cpp
2015-08-24 18:41:02 -04:00
InvokeArgument< 2 > (5, string("Hi"), ByRef(foo))
```
calls the mock function's #2 argument, passing to it `5` and `string("Hi")` by value, and `foo` by reference.
## Default Action ##
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:--------|:------------|
2015-08-24 18:41:02 -04:00
|`DoDefault()` |Do the default action (specified by `ON_CALL()` or the built-in one).|
**Note:** due to technical reasons, `DoDefault()` cannot be used inside a composite action - trying to do so will result in a run-time error.
## Composite Actions ##
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:-----------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|`DoAll(a1, a2, ..., an)` |Do all actions `a1` to `an` and return the result of `an` in each invocation. The first `n - 1` sub-actions must return void. |
|`IgnoreResult(a)` |Perform action `a` and ignore its result. `a` must not return void. |
|`WithArg<N>(a)` |Pass the `N` -th (0-based) argument of the mock function to action `a` and perform it. |
2015-08-24 18:41:02 -04:00
|`WithArgs<N1, N2, ..., Nk>(a)` |Pass the selected (0-based) arguments of the mock function to action `a` and perform it. |
2018-09-03 21:56:23 +03:00
|`WithoutArgs(a)` |Perform action `a` without any arguments. |
2015-08-24 18:41:02 -04:00
## Defining Actions ##
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:----------------------------------------------|:------------------------------------------------------------------------------------------|
| `ACTION(Sum) { return arg0 + arg1; }` | Defines an action `Sum()` to return the sum of the mock function's argument #0 and #1 . |
| `ACTION_P(Plus, n) { return arg0 + n; }` | Defines an action `Plus(n)` to return the sum of the mock function's argument #0 and `n` . |
| `ACTION_Pk(Foo, p1, ..., pk) { statements; }` | Defines a parameterized action `Foo(p1, ..., pk)` to execute the given `statements` . |
2015-08-24 18:41:02 -04:00
The `ACTION*` macros cannot be used inside a function or class.
# Cardinalities #
These are used in `Times()` to specify how many times a mock function will be called:
2018-09-03 21:56:23 +03:00
| Matcher | Description |
|:--------|:------------|
2015-08-24 18:41:02 -04:00
|`AnyNumber()` |The function can be called any number of times.|
2018-09-03 21:56:23 +03:00
|`AtLeast(n)` |The call is expected at least `n` times.|
|`AtMost(n)` |The call is expected at most `n` times.|
2015-08-24 18:41:02 -04:00
|`Between(m, n)` |The call is expected between `m` and `n` (inclusive) times.|
|`Exactly(n) or n` |The call is expected exactly `n` times. In particular, the call should never happen when `n` is 0.|
# Expectation Order #
By default, the expectations can be matched in _any_ order. If some
or all expectations must be matched in a given order, there are two
ways to specify it. They can be used either independently or
together.
## The After Clause ##
2018-09-03 21:56:23 +03:00
```cpp
2015-08-24 18:41:02 -04:00
using ::testing::Expectation;
...
Expectation init_x = EXPECT_CALL(foo, InitX());
Expectation init_y = EXPECT_CALL(foo, InitY());
EXPECT_CALL(foo, Bar())
.After(init_x, init_y);
```
says that `Bar()` can be called only after both `InitX()` and
`InitY()` have been called.
If you don't know how many pre-requisites an expectation has when you
write it, you can use an `ExpectationSet` to collect them:
2018-09-03 21:56:23 +03:00
```cpp
2015-08-24 18:41:02 -04:00
using ::testing::ExpectationSet;
...
ExpectationSet all_inits;
for (int i = 0; i < element_count ; i + + ) {
all_inits += EXPECT_CALL(foo, InitElement(i));
}
EXPECT_CALL(foo, Bar())
.After(all_inits);
```
says that `Bar()` can be called only after all elements have been
initialized (but we don't care about which elements get initialized
before the others).
Modifying an `ExpectationSet` after using it in an `.After()` doesn't
affect the meaning of the `.After()` .
## Sequences ##
When you have a long chain of sequential expectations, it's easier to
specify the order using **sequences** , which don't require you to given
each expectation in the chain a different name. < i > All expected< br >
calls< / i > in the same sequence must occur in the order they are
specified.
2018-09-03 21:56:23 +03:00
```cpp
2015-08-24 18:41:02 -04:00
using ::testing::Sequence;
Sequence s1, s2;
...
EXPECT_CALL(foo, Reset())
.InSequence(s1, s2)
.WillOnce(Return(true));
EXPECT_CALL(foo, GetSize())
.InSequence(s1)
.WillOnce(Return(1));
EXPECT_CALL(foo, Describe(A< const char * > ()))
.InSequence(s2)
.WillOnce(Return("dummy"));
```
says that `Reset()` must be called before _both_ `GetSize()` _and_
`Describe()` , and the latter two can occur in any order.
To put many expectations in a sequence conveniently:
2018-09-03 21:56:23 +03:00
```cpp
2015-08-24 18:41:02 -04:00
using ::testing::InSequence;
{
InSequence dummy;
EXPECT_CALL(...)...;
EXPECT_CALL(...)...;
...
EXPECT_CALL(...)...;
}
```
says that all expected calls in the scope of `dummy` must occur in
strict order. The name `dummy` is irrelevant.)
# Verifying and Resetting a Mock #
Google Mock will verify the expectations on a mock object when it is destructed, or you can do it earlier:
2018-09-03 21:56:23 +03:00
```cpp
2015-08-24 18:41:02 -04:00
using ::testing::Mock;
...
// Verifies and removes the expectations on mock_obj;
// returns true iff successful.
Mock::VerifyAndClearExpectations(&mock_obj);
...
// Verifies and removes the expectations on mock_obj;
// also removes the default actions set by ON_CALL();
// returns true iff successful.
Mock::VerifyAndClear(&mock_obj);
```
You can also tell Google Mock that a mock object can be leaked and doesn't
need to be verified:
2018-09-03 21:56:23 +03:00
```cpp
2015-08-24 18:41:02 -04:00
Mock::AllowLeak(&mock_obj);
```
# Mock Classes #
Google Mock defines a convenient mock class template
2018-09-03 21:56:23 +03:00
```cpp
2015-08-24 18:41:02 -04:00
class MockFunction< R ( A1 , . . . , An ) > {
public:
MOCK_METHODn(Call, R(A1, ..., An));
};
```
2015-12-08 13:36:05 +01:00
See this [recipe ](CookBook.md#using-check-points ) for one application of it.
2015-08-24 18:41:02 -04:00
# Flags #
2018-09-03 21:56:23 +03:00
| Flag | Description |
|:--------|:------------|
2015-08-24 18:41:02 -04:00
| `--gmock_catch_leaked_mocks=0` | Don't report leaked mock objects as failures. |
2018-09-03 21:56:23 +03:00
| `--gmock_verbose=LEVEL` | Sets the default verbosity level (`info` , `warning` , or `error` ) of Google Mock messages. |